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As digital biomarkers gain traction in Alzheimer’s disease (AD) diagnosis, understanding recent
advancements is crucial. This review conducts a bibliometric analysis of 431 studies from five online
databases: Web of Science, PubMed, Embase, IEEE Xplore, and CINAHL, and provides a scoping
review of 86 artificial intelligence (AI) models. Research in this field is supported by 224 grants across
54 disciplines and 1403 institutions in 44 countries, with 2571 contributing researchers. Key focuses
include motor activity, neurocognitive tests, eye tracking, and speech analysis. Classical machine
learning models dominate AI research, though many lack performance reporting. Of 21 AD-focused
models, the average AUC is 0.887, while 45 models for mild cognitive impairment show an average
AUCof 0.821. Notably, only 2 studies incorporated external validation, and 3 studies performedmodel
calibration. This review highlights the progress and challenges of integrating digital biomarkers into
clinical practice.

As the global population continues to age, the incidence and severity of
Alzheimer’s disease (AD) have steadily increased, posing a significant
public health challenge and disease burden worldwide1. According to
the World Health Organization, more than 55 million people are
currently living with dementia2, with AD accounting for 60%-70% of
all dementia cases3. The main symptoms of AD include cognitive
dysfunction, memory loss, and mood fluctuations4. Due to its complex
etiology and unclear pathophysiological mechanisms, there are cur-
rently no targeted treatments or drugs capable of fully reversing the
disease progression, which places substantial economic and healthcare
burdens on both society and patients’ families5. This therapeutic
challenge underscores the critical importance of early detection and
diagnosis, which can extend the window for intervention, delay
symptom progression, optimize care planning, reduce caregiver bur-
den, and ultimately preserve patient quality of life for longer periods.

Currently, the clinical diagnosis of AD primarily relies on neu-
ropsychological assessments and the traditional biomarker-based diag-
nosticmethods defined by theNIA-AA’s ATN framework6. Although these
conventional approaches are widely accepted, they are often costly, difficult
to scale, and may involve invasive or inconvenient procedures, making
frequent testing challenging. For instance, measuring “A” markers, which
reflect β-amyloid protein levels, typically requires a lumbar puncture to
assess cerebrospinal fluid Aβ42 concentrations7 or amyloid PET scans8.
Additionally, while neuropsychological assessments are simple and quick,
they heavily on patient self-reports, introducing subjectivity and variability
depending on the evaluator. Moreover, these assessments are usually con-
ducted at specific time points, making them susceptible to various factors
(e.g., patient comorbidities,medicationuse, ormotivation),which can result
in misdiagnosis or underdiagnosis. Given these limitations, many
researchers are exploring alternative and emerging diagnostic methods to
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supplement the existing diagnostic toolkit. For instance, ocular biomarkers9,
other fluid-based markers10, and blood-based biomarkers11 have been
investigated. While these approaches have reduced testing costs and mini-
mized invasive procedures to some extent, they still fall short of meeting the
requirements for repeated testing or longitudinal monitoring and continue
to face long-standing challenges in these areas.

The exponential growth in digital biomarker studies has created an
urgent need for systematic analysis of research trends, methodological
approaches, and translational progress in this rapidly evolving field The U.S.
Food and Drug Administration (FDA) defines digital biomarkers as “a
characteristic or set of characteristics collected through digital health tech-
nologies, which serve as indicators of normal biological processes, pathogenic
processes, or responses to exposure or interventions, including therapeutic
interventions“12. In AD research, digital biomarkers typically refer to objec-
tive, quantifiable physiological and behavioral data collected through digital
devices such as sensors, wearables, and implantable devices13. Examples
include gait parameters measured via wearable devices14,15, eye movement
parameters collected by eye-tracking devices16, and speech features recorded
throughmicrophones17. These measurement methods are not only objective
and ecologically valid, but also enables seamless data collection during daily
activities, enabling real-time monitoring of subtle changes in health status18.
Furthermore, digital biomarkers support longitudinal data collection,making
continuous tracking of patients’ health status possible19. This capability is
crucial for early predictionand intervention indisease progression, ultimately
improving treatment outcomes and enhancing quality of life. Therefore,
digital biomarkers hold significant potential for the diagnosis and manage-
ment of AD and are poised to become essential tools for disease monitoring
and treatment in the future.

With the rapid development of digital biomarkers in AD, a compre-
hensive overview of themultidimensional landscape in this field is becoming
increasingly essential to understand emerging trends. While several reviews
have explored the potential applications of digital biomarkers in AD, their
scope and focus diverge from that of our study. For instance, one review
analyzed dementia-related digital biomarker phenotypes derived from
mobile and wearable devices, highlighting the potential of these
technologies20. Similarly, another scoping review concentrates on the use of
digital biomarker in non-clinical, home-based settings for monitoring and
follow-up in mild cognitive impairment (MCI) or early-stage AD18. These
reviews are more context-specific and do not address the developmental
variations across different types of digital biomarkers. Furthermore, as these
reviews were published earlier, they now require updating to reflect recent
advances. With the growing integration of artificial intelligence (AI) in
healthcare, it is crucial to explore the potential synergies between AI and
digital biomarkers; however, existing reviews predominantly focus on AI’s
applications in traditional biomarkers21,22. This study aims to address these
gaps by systematically reviewing and analyzing the current landscape of
digital biomarkers inAD,with aparticular emphasis on recent advancements
in AI and interdisciplinary collaboration. Through this comprehensive
analysis, we aim to: (1) identify emerging research frontiers and unexplored
opportunities; (2) uncover methodological strengths and limitations in cur-
rent approaches; (3) characterize successful models of interdisciplinary and
industry-academic collaboration; and (4) provide evidence-based recom-
mendations for accelerating translation of digital biomarkers into real- world
clinical practice. Table 1 highlights the main differences between our study
and previous reviews in the field.

Protocol and registration
This study adheres to the PRISMA-ScR guidelines for scoping reviews and
reporting the search strategy23 The protocol was pre-registered through the
Open Science Framework (https://doi.org/10.17605/OSF.IO/6DK5U). The
checklist for this study can be found in Supplementary Table 1.

Ethical considerations
Ethics committee permission was not required, as this study was a retro-
spective analysis of the existing published studies.

Results
Number of articles included in the analysis
Initially, a total of 24,257 records were retrieved. After a series of filtering
steps, 16,205 studies remained. Finally, 431 studies were selected for bib-
liometric analysis, of which 15 were added through reference list searches.
After evaluating the full text of the 431 records, 86 studies were included in
our scoping review, with 12 being added following a second-round search
update. The specific retrieval and screening process is illustrated in Fig. 1a,
and Fig. 1b provides a more detailed overview of our research content.

The annual trends of publications
Conducting productivity analysis in a research field helps in understanding
the dynamics and emerging trends within that field. The earliest related
study in this field was published in 2004, and after 20 years of development,
the cumulative output has reached 431 publications. In 2017, the annual
output exceeded 20 publications for the first time (22/431, 5.10%), and in
both 2022 and 2023 it peaked at 77 publications (77/431, 17.9%). The red
dashed line in Fig. 2a represents the fitted trend line, showing an overall
upward trajectory (R2 = 0.87, indicating a goodmodelfit). Joinpoint analysis
identified significant turning points in publication volume in the years 2013,
2019, and 2022. The slope for the period 2004–2013 (slope1) was 0.76, for
2013–2019 (slope2) was 3.35, and for 2019–2022 (slope3) was 16.22. The
slope from 2022 to 2024, due to the retrieval cutoff date (May 2024), did not
cover the full year of 2024, resulting in a slope of -13.90. Notably, the
differences in slopes between slope1 and slope2, slope2 and slope3, aswell as
slope3 and slope4 were all statistically significant (p < 0.05), indicating
notable changes in the growth trends at these time points, as shown in
Fig. 2b.

Based onpublication volume and slope changes, the research output in
this field can be divided into three distinct phases. The first stage (2004-
2012) had a total of 26 publications (6.03% of the total), with a compound
annual growth rate (CAGR) of 25.10%. The second stage (2013–2018) saw
91 publications (21.11% of the total), with a CAGR of 25.59%. In the third
stage (2019-2024), although the data for 2024 is not yet complete, the trend
line in Fig. 2a predicts continued growth in output for 2024. During this
stage, 314 publications (72.85% of the total), with a CAGR of 27.34% from
2019 to 2023.

Institutional analysis
Conducting institutional output and collaborationanalysis aids indissecting
the structure of the research field. A total of 912 institutions have partici-
pated in research on AD digital biomarkers, collectively publishing 1,403
papers. Among these institutions, 489 (53.6%) are universities, contributing
864 papers (61.6%); 209 (22.9%) are hospitals, producing 268 papers
(19.1%); 134 (14.7%) are research institutes or government entities, pub-
lishing 174 papers (12.4%); and 80 (8.8%) are companies, publishing 97
papers (6.9%), as shown in Figs. 3a and 3b. Oregon Health & Science
University in the United States has the highest output, publishing 13 papers
(0.93%). This institution also has the highest citation count, with 492 cita-
tions (1.98%), and an average of 37.85 citations per paper. The top 10
institutions by output are predominantly universities, with nearly half
located in the United States, as detailed in Table 2.

A total of 236 institutions published more than two papers (25.87%),
with a combined output of 727 papers (51.82% of the total publications).
These institutions have formed close collaborations within several coop-
erative clusters, particularly centered around high-output universities. In
terms of the timeline, institutional collaboration has been primarily con-
centrated since 2019, as shown in Fig. 3c, d.

Country analysis
Analyzing national output and collaboration patterns provides a macro-
level understanding of the global progress in AD digital biomarkers, the
research disparities between countries, and emerging collaboration trends.
A total of 44 countries have contributed to research publications in thisfield.
The top 10 most productive countries (with ties allowed, resulting in the
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inclusion of 11 countries) have collectively contributed 450 studies (74.75%
of the total). These countries also account for 8,358 citations (70.96%) and
627 institutions (68.75%). Among these high-output countries, 5 are in
Europe, 3 in Asia, 2 in the Americas, and 1 in Oceania. The United States
ranks first in publication output, citation count, collaborative countries,
number of institutions, and gross domestic product (GDP). Notably, all of
these high-output countries are ranked among the top 15 by GDP, as
detailed in Table 3.

There are notable differences in the timeline of relevant research
among these high-output countries. The United States was the first to
initiate research onAD digital biomarkers and also has the longest research
span. Japan and Australia gradually initiated relevant research since 2007,
while China entered the field in 2014. By May 2024, it had already risen to
second place in global output. Since 2018, nearly all high-output countries
have consistently published research eachyear, as shown inFig. 4a.Globally,
20 European countries have participated in digital biomarker research for
AD diagnosis, with their output significantly surpassing that of most other
regions. In contrast, African countries have exhibited comparatively less
interest in this topic, with only two countries contributing a small number of
studies, as detailed in Fig. 4b.

Regarding global cross-national collaboration, the observed frequency
and intensity of collaboration are belowanticipated levels. TheUnited States

has the highest frequencyof cross-national collaborations, with 93 spanning
28 countries (28/44, 63.64%). The UK follows with 49 collaborations across
21 countries. On the other hand, Asian countries like China, Japan, and
South Korea have fewer cross-national collaborations, with 15, 15, and 5
collaborations, respectively. These collaborations span fewer countries: 4 (4/
44, 9.09%), 9 (9/44, 20.45%), and 5 (5/44, 11.36%) countries, respectively, as
shown in Fig. 4c.

Disciplinary publication patterns
Analyzing publication patterns within a discipline can reveal the research
cycles and emerging trends in the field. To date, journals from54 disciplines
have published on this topic. Specifically, between 2004 and 2012, 20 dis-
ciplineswere involved,withpublicationsprimarily concentrated in thefields
of neuroscience, clinical neurology, psychiatry, and geriatrics, as shown in
Fig. 5a. From 2013 to 2018, the number of disciplines grew to 35, with
neuroscience, clinical neurology, and geriatrics remaining the dominant
fields. However, more engineering and interdisciplinary journals, such as
those in medical informatics, computer science, mathematics, and com-
putational biology, began to accept relevant research, as shown in Fig. 5b.
Between 2019 and 2024, the number of participating disciplines further
expanded to 46.While neuroscience and clinical neurology remain continue
to be core disciplines, medical informatics and health care sciences and

Table 1 | Highlights the key differences between our bibliometric and scoping review study and previous research in the field,
indicating how our study builds upon and updates earlier work

Previous reviews (Year) Scope Comparative contribution of our review

Digital biomarkers for Alzheimer’s disease: the
mobile/wearable devices opportunity. (2019)20

This review explores how digital biomarkers obtained
throughmobile andwearable devices canassist in the
early detection and monitoring of AD, particularly by
utilizing data collected from multiple sensors to
identify early signs of the disease.

Our reviewprovides anoverviewof thebroad rangeofAD
digital biomarker research, including details on data
collection devices, tasks, and other relevant aspects.
Additionally, we discuss the trends in the popularity of
various types of digital biomarkers.

Current State of Digital Biomarker Technologies for
Real-Life, Home-Based Monitoring of Cognitive
Function for Mild Cognitive Impairment to Mild
Alzheimer Disease and Implications for Clinical Care:
Systematic Review. (2019)18

This review evaluates the application of digital
biomarker technologies in home settings for the early
detection and monitoring of MCI and AD, exploring
the potential and prospects of various technologies.

Our review covers a variety of digital biomarker
technologies, extending beyond home-based
applications. Additionally, we review six studies on
home-based monitoring digital biomarkers that are
based on AI technologies.

Artificial intelligence for dementia—Applied models
and digital health. (2023)180

This review explores how artificial intelligence and
digital health technologies, through machine learning
and digital biomarkers, play a crucial role in risk
prediction, diagnosis, and monitoring disease
progression in AD.

Building on this research, our review specifically
examines 86 studies utilizing artificial intelligence and
digital biomarkers, offering multifaceted insights into AI
models.

Artificial intelligence for biomarker discovery in
Alzheimer’s disease and dementia. (2023)221

The primary contribution of this review lies in
exploring the applications of AI and machine learning
in identifying biomarkers for AD.

This review specifically focuses on the research of AI
models for digital biomarkers.

Applications of artificial intelligence to aid early
detection of dementia: A scoping review on current
capabilities and future directions. (2022)21

This review focuses on how AI aids in the early
detection of dementia, including AD, through
methods such as computerized cognitive testing,
motion analysis, speech and language testing, and
brain imaging interpretation.

Our review not only covers AI research in areas such as
motion analysis and speech analysis but also provides a
more detailed overview of various types of digital
biomarkers.

A review of artificial intelligence methods for
Alzheimer’s disease diagnosis: Insights from
neuroimaging to sensor data analysis. (2024)22

This review explores the applications of AI and
machine learning in early diagnosis andmonitoring of
ADby integrating neuroimaging and sensor data, with
a particular focus on the review of imaging content.

Our review focuses solely on digital biomarkers,
providing a systematic overview of AI applications in
various types of digital biomarkers.

Predictive Accuracy of Digital Biomarker
Technologies for Detection of Mild Cognitive
Impairment and Pre-Frailty Amongst Older Adults: A
Systematic Review and Meta-Analysis. (2022)222

This review summarizes the predictive accuracy of
digital biomarker technologies in the early detection
of MCI and pre-frailty through systematic evaluation
and meta-analysis.

Our review places greater emphasis on the research of
digital biomarkers for AD and MCI, providing a
comprehensive review of 86 AI models, including their
performance.

The performance of artificial intelligence-driven
technologies in diagnosing mental disorders: an
umbrella review. (2022)164

This review extracted data from other systematic
reviews on the performance of AI models in
diagnosing mental disorders, including AD and MCI,
summarizing their accuracy, sensitivity, and
specificity. However, this study focuses on research
utilizing neuroimaging and psychological data.

Our review focuses on 86 studies of different types of
digital biomarker AI research, providing detailed
information including performance, data collection
tasks, devices, model validation, code availability,
and so on.

Mapping Knowledge Landscapes and Emerging
Trends in AI for Dementia Biomarkers: Bibliometric
and Visualization Analysis. (2024)163

This review uses bibliometric analysis to assess the
application of AI in dementia biomarker research,
exploring the current trends and future directions of
combining various biomarkers, such as imaging,
genetics, blood, and digital biomarkers, with AI
algorithms.

Our review further explores the multidimensional
landscape of digital biomarkers in AD, uncovering the
emerging trends of various digital biomarkers.
Additionally, it offers a comprehensive review of 86 AI
models in this field.
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services have gradually emerged as key areas for publication, as shown in
Fig. 5c.

Figure 6 shows that among the top 10 disciplines with the most pub-
lications on digital biomarkers, Neurosciences, Clinical Neurology, and
Geriatrics & Gerontology are the highest-yielding fields. Notably, Neu-
rosciences has consistently accounted for over 20% of the publication output
of the top 10 disciplines each year. Clinical Neurology and Geriatrics &
Gerontology have also consistently contributed more than 10% of the pub-
lication output each year, and these three fields havemaintained continuous
publication acticity over the past 20 years. Psychiatry has also demonstrated
steady publication activity since 2010, though its research output has
remained relatively low. It is also noteworthy that over the past five years,
Medical Informatics has steadily contributed about 10% of the top 10 dis-
ciplines’publicationoutput, indicating somepotential for growth in thisfield.

Funding analysis
An analysis of funding sources reveals the distribution trends of research
grants. A total of 350 studies (350/431, 81.21%) have received funding, with

a cumulative 1,345 funding instances, averaging 3.84 funding sources per
funded study. These funding projects were supported by 539 different
sources. Among the top ten funding departments or agencies, three belong
to U.S. government bodies, with the National Institutes of Health being the
most frequent funder, providing 159 grants (11.82%), as shown in Table 4.

From 2004 to 2011, the annual funding instances was relatively low,
with fewer than 10 per year. Since 2019, the number of annual funding
instanceshas increased significantly, reachingapeakof 256 in2022 (19.03%,
256/1,345). The fitted trend line for annual funded projects indicates a
growing trend in funding for this field (R2 = 0.76). Additionally, the average
number of funding occurrences per year in this field exhibits a fluctuating
growth trend. Before 2016, the average number of funding instances fluc-
tuated significantly, peaking at 5.67 in 2012 before quickly dropping to 2.38.
However, over the past 20 years, the average number of funding instances
per study has shown an overall upward trend, stabilizing around 3.5 after
2020, as shown in Fig. 7a.

We categorized the funding sources into government funding, non-
profit organizations and foundation funding, corporate funding,

Fig. 1 | Literature retrieval and inclusion process flowchart. a Flow diagram illustrating the PRISMA approach for the identification, screening, and selection of studies.
b Specific research content.
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international organizations funding, university and research institution
funding, and personal funding. Government departments were the primary
source of funding, with 224 projects (41.6%), providing 888 funding
instances (66.0%), averaging 3.96 instances per project. Nonprofit organi-
zations and foundations followed, with 135 different projects (25.1%)
providing 221 instances (16.4%), averaging 1.64 instances per project.
Notably, although universities and research institutions are the main
research entities, their funding was lower than expected, with only 82 dif-
ferent projects and 92 funding instances, averaging 1.12 instances per
project. Additionally, we found a minimal number of personal funding
instances in this field, as shown in Fig. 7b, c.

Keyword analysis
Keyword analysis reveals the research trends, hot topics, and technological
advancements in thefieldofdigital biomarkers.After data cleaning, a total of
897 keywords were obtained, appearing 2332 times in total. According to
Price’s Law24, keywords with a frequency of nine occurrences or more are
considered high-frequency keywords in this study. A total of 33 high-
frequency keywords were identified, appearing 1,146 times in total, which
accounts for 49.14% of all keyword occurrences. The top three most fre-
quent keywords are all related to AD: “Alzheimer’s disease” (165 occur-
rences, 7.08%), “MildCognitive Impairment” (164occurrences, 7.03%), and
“Dementia” (122 occurrences, 5.23%). Following these were “Gait analysis”
(76 occurrences, 3.26%) and “Machine learning” (49 occurrences, 2.10%).
The distribution of high-frequency keywords is provided in Supplementary
Table 2. In terms of maturity, the number of keywords began to increase
gradually increase in 2016, with almost all high-frequency keywords
showing progressivematuration. By around 2020,most began transitioning
to orange or red shades, indicating a significant increase in research activity.
Notably, the term “digital biomarkers” as a standardized keyword did not
appear until 2020, despite relateddigital biomarkers such as gait analysis, eye
movements, and smart homes emerging in earlier periods, as shown in
Fig. 8a.

The co-occurrence and clustering of the keywords resulted in five
major clusters:

#1RedCluster (EyeMovement andCognitiveTrackingTechnologies):
includes keywords such as eye tracking, eye movements, reading, anti-
saccade, oculomotor behavior, and attention.

#2 Green Cluster (Gait Monitoring and Analysis Technologies):
includes keywords such as foot, doppler radar, feature extraction, sensors,
machine learning, task analysis, monitoring, and early detection.

#3 Blue Cluster (Home Activity Behavior and Monitoring Technolo-
gies): includes keywords such as smart homes, remotemonitoring, wearable
devices, and technology.

#4 Light Blue Cluster (Cognitive Aging and AI-Assisted Behavioral
Assessment Technologies): includes keywords such as kinematics, trajec-
tory, assessment, naturalistic driving, artificial intelligence, cognitive test,
and cognitive aging.

#5 Yellow Cluster (Digital Speech and Cognitive Analysis Technolo-
gies): includes keywords such as speech, voice, digital technology, episodic
memory, language, and natural language processing. These clusters are
shown in Fig. 8b.

Trends in various types of digital biomarkers
Analyzing the output trends of different types of digital biomarkers helps
reveal the development trends and potential of research and applica-
tions. The 431 studies covered 11 different types of digital biomarkers,
with significant differences in the number and trends of studies across
these categories. Research on limbmovement digital biomarkers was the
most prevalent, totaling 134 studies (31.1%), with a rapid increase after
2015, peaking at 25 studies in 2022. The second most researched cate-
gory was digital assessments usingmobile or dedicated ICT devices, with
120 studies (27.8%). This category saw a rapid increase after 2016 and
remained steadywith over 15 studies annually after 2021. Eyemovement
biomarkers and speech biomarkers also showed considerable research
activity, accounting for 12.07% and 7.89% of the total, respectively.
Speech biomarkers experienced rapid growth after 2019, while eye
movement biomarkers exhibited a fluctuating upward trend. Home
activity biomarkers and multi-modal biomarkers were less represented,
with 27 and 24 studies, respectively. Multi-modal biomarkers have
shown slow but fluctuating growth since 2018. Other categories, such as
natural driving behavior, biofeedback or physiological signals, and sleep
patterns, had relatively fewer studies, but their diversity highlights the
broad and evolving nature of current digital health research. Overall,
research on digital biomarkers has significantly increased in recent years,
particularly in the areas of limb movement and eye movement

Fig. 2 | Distribution and Trends in Alzheimer’s Disease Digital Biomarkers
Diagnostic Research. a Publication output distribution and trends over time. The
red dashed line represents the trend line (aTrend line:y = 0.2297x2–1.775x+ 3.8271).
b Phases of publication output in Alzheimer’s disease digital biomarkers diagnostic

research (aTrend line:y = 0.2297x2–1.775x+ 3.8271). Asterisk indicates that the
slope is significantly different from zero at the α = 0.05 level. Final selected model: 3
joinpoints.
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biomarkers. With technological advancements and the growing acces-
sibility of devices, these biomarkers are expected to play an increasingly
important role in diseasemonitoring and early diagnosis in the future, as
shown in Fig. 9.

Sample size analysis
An analysis of the sample size provides insight into the scale of research on
different digital biomarkers. As shown in the violin plot, most studies across
all types of digital biomarkers tend to have relatively small sample sizes.

Table 2 | Basic Information on the Top Ten Most Productive Institutions in Alzheimer’s Disease Digital Biomarkers Diagnostic
Research (Including 11 Institutions). (aCPP: citations per paper)

Rank Organization Output (N = 1403, n%) Citations (N = 24,908, n%) aCPP Country

1 Oregon Health & Science University 13 (0.93) 492 (1.98) 37.85 United States

2 Boston University 9 (0.64) 57 (0.23) 6.33 United States

3 Aristotle University of Thessaloniki 8 (0.57) 254 (1.02) 31.75 Greece

4 University of Arizona 8 (0.57) 192 (0.77) 24.00 United States

5 University College London 8 (0.57) 241 (0.97) 30.13 United Kingdom

6 University of Toronto 8 (0.57) 190 (0.76) 23.75 Canada

7 Washington University 8 (0.57) 163 (0.65) 20.38 United States

8 Baylor College of Medicine 7 (0.50) 54 (0.22) 7.71 United States

9 IBM Research 7 (0.50) 52 (0.21) 7.43 Not available

10 Seoul National University 7 (0.50) 56 (0.22) 8.00 South Korea

11 University of Tsukuba 7 (0.50) 53 (0.21) 7.57 Japan

Fig. 3 | Institutional Collaboration in Alzheimer’s Disease Digital Biomarkers
Diagnostic Research. a Distribution of institution types involved in Alzheimer’s
disease digital biomarkers diagnostic research. b Output by institution type in
Alzheimer’s disease digital biomarkers diagnostic research. c Network diagram of
institutional collaboration. Color coding is used to display clusters, with institutions

within the same cluster sharing the same color. The size of the circles increases with
the number of publications. d Evolution of institutional collaborations over time.
Color coding is used to represent the average time for constructing institutional
collaboration networks. The size of the circles increases with the number of
publications.
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However, studies involvingmobile devices or dedicated ICT devices, as well
as physicalmovement biomarkers, have lowermedians but still offer greater
potential for larger sample sizes, with some studies involving over 2,000
participants. The sample sizes in studies on multimodal biomarkers and
non-specialized ICT show considerable variability, with some studies
involving more than 1,000 participants, suggesting the potential for
expanding sample sizes. In contrast, studies on sleep and natural driving
behaviors typically have smaller sample sizes, which may be related to the
greater difficulty in collecting such data on a large scale. These differences
suggest that there may be significant variations in the application scenarios
and data collection methods for different types of digital biomarkers. There
is still potential for improvement in both sample sizes and data quality
across various study types, as shown in Fig. 10.

The devices and paradigms commonly used in the collection of
different digital biomarkers
There are differences in the collection devices used for various digital bio-
markers. In the collection of physical activity data, different types of
movements, such as finger movements, gait, and upper limb activities, tend
to rely on specific devices.Gaitmonitoring is often performedduring single-
or dual-task gait tests, where spatiotemporal features, variability char-
acteristics, andother data are collectedusingwearable devices and electronic
road systems. Additionally, an increasing number of technological devices
have been introduced into gait research, including cameras, radar, force
plates, motion capture systems, and pressure-sensitive shoes. These devices
provide multidimensional data beyond traditional spatiotemporal gait
measures, such aspostural features, radar-based timeand frequencydomain
data, and pressure characteristics25,26. Finger movements are often more
refined compared to other types of movements. These are typically mea-
sured using digitizers and digital pens, with tasks such as drawing a digital
clock or performing the Trail Making Test to quantify motion trajectories
and pressure parameters27,28. Upper limb movements usually rely on
wearable technologies to capture features in activities such as elbow flexion-
extension or drumming, for instance, average arm speed and elevation
angles29. Eye movement biomarkers are primarily collected through eye
trackers during tasks involving fixation and saccades to capture eye
movement characteristics. However, traditional eye tracking devices suffer
from limited portability and high costs, which restricts their widespread use.
Researchers are developingmore portable solutions, such as integrating eye
trackers into the VIVE Pro Eye headset to record eye movement features30.
Other devices, such as eye-tracking glasses andportable eye trackers, are also
employed for precise data collection31,32. Speech biomarkers are collected via
microphones during tasks such as picture descriptions and spontaneous

speech, and analyzed using natural language processing techniques. These
technologies extract auditory and linguistic features, generating structured
data to aid in the diagnosis of AD21. In sleep biomarker research, while
polysomnography remains the gold standard for assessing sleep physiology,
it is unsuitable for long-term, non-invasive, and naturalistic early AD
detection or preventive studies. More practical alternatives, such as wrist-
bands andactivitymonitors, haveproven effective asmonitoring tools33. It is
worth noting that tests based on information and communication tech-
nology or mobile devices mainly rely on smartphones, tablets, computers,
and virtual reality devices for data collection.Although the variety of devices
is relatively limited, they encompass a broad range of emerging measure-
ment paradigms and variants, offering flexibility to accommodate different
testing needs34–36. In-home activity monitoring currently mainly relies on
embedded sensors to capture patients’ behaviors in their home environ-
ment. Devices used in driving behavior and physiological signal studies are
relatively uniform: driving behavior is mostly recorded using GPS loggers,
with some studies employing camera systems, while physiological signals
are predominantly captured using portable EEG systems to record elec-
troencephalographic data. Common devices used for different types of
measurements and the associated tasks are outlined in Fig. 11.

Author analysis
Collaboration network analysis can reveal key information such as core
authors and collaboration patterns within the academic community. A total
of 2571 researchers were identified, who collectively collaborated on 3185
studies, with an average of 5.84 co-authors per study. Only 3 studies were
independently completed by a single researcher. According to Price’s Law,
the publication threshold for core authors is approximately 3 papers. A total
of 121 authors (4.71%) met this criterion, collectively contributing 460
papers (460/3,185, 14.44%). However, this falls short of the Price’s Law
requirement,which stipulates that core authors should account for over 50%
of the total publications. Overall, the co-occurrence network among core
authors shows relatively independent clusters with limited connections
between them, indicating strong collaboration within clusters but minimal
collaboration across clusters, as shown in Fig. 12a. In terms of collaboration
timing, the cooperation network among core authors began to form
between 2019 and 2024, with the peak of collaboration activitiey occurring
between 2021 and 2022. Although some earlier collaborations exist, these
primarily involved highly productive authors, as shown in Fig. 12b.

Changes in multidisciplinary participation
Wesummarized the disciplinary backgrounds of the authors involved in the
research and analyzed the number of different disciplines participated in

Table 3 | Basic Information of the Top Ten Most Productive Countries in Alzheimer’s Disease Digital Biomarkers Diagnostic
Research (Including 11 Countries)

Rank Country Output (N = 602, n%) Citations (N = 11,779,n%) Organization (N = 912, n%) Partner countries
(N = 44, n%)

a2024GDP Rank United Nations
region

1 United States 135 (22.43) 3,296 (27.98) 164 (17.98) 28 (63.64) 1 Americas

2 China 60 (9.97) 481 (4.08) 96 (10.53) 4 (9.09) 2 Asia

3 United
Kingdom

41 (6.81) 788 (6.69) 36 (3.95) 21 (47.73) 6 Europe

4 Japan 41 (6.81) 492 (4.18) 63 (6.91) 9 (20.45) 4 Asia

5 South Korea 36 (5.98) 225 (1.91) 48 (5.26) 5 (11.36) 14 Asia

6 Canada 30 (4.98) 923 (7.84) 48 (5.26) 13 (29.55) 10 Americas

7 Spain 28 (4.65) 491 (4.17) 49 (5.37) 18 (40.91) 15 Europe

8 France 25 (4.15) 707 (6.00) 37 (4.06) 16 (36.36) 7 Europe

9 Germany 20 (3.32) 399 (3.39) 32 (3.51) 10 (22.73) 3 Europe

10 Australia 17 (2.82) 308 (2.61) 14 (1.54) 11 (25.00) 13 Oceania

10 Italy 17 (2.82) 248 (2.11) 40 (4.39) 16 (36.36) 9 Europe
a2024GDP Rank: Gross Domestic Product.
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each study. Overall, medicine disciplines had higher participation than
engineering-related ones. Specifically, neurology had the highest partici-
pations, with 1417 instances (1417/3,185, 44.49%), followed by other
medical disciplines with 480 instances (480/3,185, 15.07%). Computer sci-
ence or communication engineering accounted for 367 (367/3,185, 11.52%).
Geriatrics had the fewest participations, with only 60 instances (60/3,185,
1.88%). From the perspective of participation rate, neurology had the
highest annual average participation rate at 0.60, followed by other medical
disciplines at 0.31, and computer and communication engineering at 0.25.

In terms of yearly changes, the participation rate for medical-related
disciplines fluctuated significantly. Neurology consistently had the highest
participation rate, staying above 0.5 each year, with fluctuations stabilizing
after 2018. Other medical disciplines showed greater variation in partici-
pation rates and have yet to establish a stable trend. Geriatrics, psychology,

and psychiatry had smaller fluctuations, but their annual participation rates
remained low, with psychology exceeding 20% only in 2011 and psychiatry
surpassing 20% in 2022 and 2024, as shown in Fig. 13a. Participation in
engineering and other disciplines also fluctuated, particularly before 2019.
However, after 2020, the fluctuations in participation rates for these dis-
ciplines began to decrease, showing an upward trend, as shown in Fig. 13b.

Differences in disciplinary participation in various types of digital
biomarkers for Alzheimer’s diagnosis
There are notable differences in disciplinary participation across different
types of digital biomarkers for Alzheimer’s diagnosis. Neurologists have
extensively participated in research on all types of digital biomarkers. Pro-
fessionals from other medical fields, biomedical or medical engineering,
have a broad presence across different studies. Researchers from computer

Fig. 4 | Productivity and Collaboration Among Nations in Alzheimer’s Disease
Digital Biomarkers Diagnostic Research. a Temporal distribution of output by
high-producing countries. b Chord diagram of international collaborations among
countries. c Geographic distribution map of publication by country in Alzheimer’s

disease digital biomarkers diagnostic research. The colors representing countries/
regions have no specific meaning; only the thickness of the lines between them is
significant, indicating the frequency of collaboration between different countries.
The thickness of the lines corresponds to the values on their respective axes.
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or information engineering, and other engineering fields, also had high
coverage, participating in 10 out of 11 types of studies (90.9%). In contrast,
professionals from geriatrics and psychiatry were involved in fewer types of
research, with limited participation in areas such as natural driving, sleep,
and physiological signals. From the perspective of the different types of
biomarker research, 7out of the11 typesofdigital biomarker studies showed
incomplete disciplinary participation. Home activity and multi-modal
biomarker research had relatively high participation rates (8/9, 88.89%),
while sleep and other types of research had the lowest disciplinary partici-
pation rates (4/9, 44.44%). Comparatively, studies on limb movement, eye
movement, speech, and digital testing usingmobile or ICT devices were the
most comprehensively covered by various disciplines, as shown in Fig. 14.

Interdisciplinary collaboration analysis
Interdisciplinary collaboration analysis can effectively reveal how these
collaborations drive digital biomarker research and optimize future
research directions. We analyzed the interdisciplinary collaboration
patterns between various fields. Overall, psychiatry and geriatrics
showed limited collaboration with other disciplines. Bioinformatics or

medical engineering mainly collaborated with neurology and computer
or communication engineering, but had fewer partnerships with other
disciplines. Psychology exhibited more collaboration with computer or
communication engineering and neurology, as well as other medical
disciplines. Neurology maintained strong collaborative relationships
across disciplines, especially with computer or communication engi-
neering and other engineering fields. Computer or communication
engineering primarily collaborated with biomedical or medical engi-
neering, neurology, and psychology, with less collaboration with other
disciplines. Other engineering fields tended to collaborate with neurol-
ogy, while other medical disciplines were more inclined to work with
psychiatry, geriatrics, psychology, neurology, and other medical fields,
but showed weaker collaboration with engineering-related fields, as
illustrated in Fig. 15.

In the collaborative network analysis of the four most widely
studied biomarkers, the field of neurology continues to demonstrate
significant collaborative interest, although its primary collaborators
differ slightly. In research on motor biomarkers, neurology pre-
dominantly collaborates with other medical disciplines. In contrast,

Fig. 5 | Heatmaps of Disciplinary Publications in Alzheimer’s Disease Digital Biomarkers Diagnostic Research Over Three Time Periods. a 2004–2012. b 2013–2018.
c 2019–2024. Color indicates the popularity of a discipline during the given time period, with redder colors representing higher popularity and dominance.
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studies on digital detection biomarkers and oculomotor biomarkers
show stronger collaboration with fields such as computer science or
communication engineering, as well as other medical areas. In the case
of language biomarkers, despite the generally limited strong colla-
boration across disciplines, neurology maintains a close partnership
with computer science or information engineering. For further details,
please refer to Supplementary Figure 1.

Scope definition of artificial intelligence model research
The methods used for build AI models with digital biomarkers share
many similarities with those for traditional biomarkers, particularly in
model training and validation. However, the key difference lies in data
collection methods and the data types of data involved. Traditional
biomarkers rely on medical imaging (e.g., MRI or PET), blood tests,
and cerebrospinal fluid analysis, whereas digital biomarkers capture
behavioral and physiological data through wearable devices, smart-
phones, tablets, and other digital tools in daily life or specific task
paradigms37,38. These data collection methods introduce the challenge
of handling high-dimensional and unstructured data. For instance, gait
data generates multiple data points per second, speech analysis

involves spectral features, and handwriting trajectories include various
parameters such as speed, pressure, and direction. Traditional statis-
tical methods may struggle to fully extract meaningful information
from this data. Thus, AI techniques can process large-scale, complex
data, facilitating early diagnosis, personalized treatment, and con-
tinuous disease monitoring. The specific method for constructing the
digital biomarker AI model is shown in Fig. 16.

The following sections provide a comprehensive overview of the
results from our scope-defined review, organized around several key
themes identified during the analysis. We first describe the data used in
these studies, covering aspects such as data patterns, resources, sample
size, data imbalance, and handling ofmissing data. Next, we discuss the
AI-based models and their application methods. This is followed by a
detailed presentation of the validation procedures, performance
metrics, and comparisons across the studies. We also summarize the
distribution of features across different types of digital biomarkers,
highlighting their collection methods and the task paradigms
employed in AI models. Lastly, we examine the reporting standards
and reproducibility of the included studies to evaluate the transparency
and reliability of the research.

Fig. 6 | Temporal Patterns of Disciplinary Publications in Alzheimer’s Disease Digital Biomarkers Diagnostic Research. The different colors of the bars represent
different disciplines, and the length of each bar indicates the proportion of output from a particular discipline during the specified period.

Table 4 | Top Ten Funding Sources for Alzheimer’s Disease Digital Biomarkers Diagnostic Research

Rank Grant Frequency (N = 1345, n%) Country

1 National Institutes of Health (NIH) 159 (11.82) United States

2 National Institute on Aging (NIA) 87 (6.47) United States

3 Japan Society for the Promotion of Science Grants-in-Aid for Scientific Research (JSPS KAKENHI) 34 (2.53) Japan

4 Engineering and Physical Sciences Research Council (EPSRC) 20 (1.49) United Kingdom

5 Canadian Institute Of Health And Research (CIHR) 17 (1.26) Canada

6 National Science Foundation (NSF) 16 (1.19) United States

7 Alzheimer’s Association 15 (1.12) Not available

8 National Natural Science Foundation of China (NSFC) 13 (0.97) China

9 National Key R&D Program Of China 12 (0.89) China

10 Alzheimer’s Research U.K. 12 (0.89) United Kingdom
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Distribution of basic research information
A total of 86 studies were included in the analysis. Among these,
36 studies involved AD patients, with a total of 1663 cases, and
sample sizes ranging from 5 to 166 participants. 63 studies included
patients with MCI, totaling 3869 cases, with sample sizes ranging
from 5 to 403 participants. Additionally, some studies included
patients with other diseases closely related to AD: 3 studies on
dementia with Lewy bodies with 100 participants27,39,40; 1 study on
vascular dementia with 27 participants41; 1 study on subjective
cognitive impairment with 56 participants42; 1 study on subjective
memory complaints with 9 participants43; 1 study on PreMCI with 20
participants44; 1 study on PreAD with 64 participants45; and 1 study

on mixed dementia with 38 participants42.In addition, 9 studies
reported dementia patients without specifying the exact subtype.
Given that AD accounts for the majority of dementia subtypes, and
considering that some researchers use the term “dementia” to
broadly refer to AD, as well as the representativeness of the digital
devices used in these studies, we did not exclude these dementia-
focused studies46–54. One study47 mentioned that its dementia group
included both AD and Parkinson’s disease patients, but did not
specify the proportion of each. Furthermore, one study on suspected
dementia patients55 and another that predicted dementia risk in 18
elderly participants56, both of which were also included in the
analysis.

Fig. 8 | Keywords Analysis in Alzheimer’s disease Digital Biomarkers Diagnostic
Research. a Temporal heatmap of high-frequency keywords. Color represents the
proportion of keyword frequency for that year relative to the total frequency of the

keyword. The more frequent the keyword, the redder the color, indicating a more
mature topic. bClustering diagram of keywords co-occurrence. Color coding is used
to display clusters, with keywords within the same cluster sharing the same color.

Fig. 7 | Types and Quantities of Funding in Alzheimer’s Disease Digital Bio-
markers Diagnostic Research. a Funding trends in Alzheimer’s disease digital
biomarkers diagnostic research. The red dashed line represents the trend line

(aTrend line:y = 0.7712x2–6.0744x+ 9.2722), (b) Distribution of funding types.
c Quantities of each type of funding.
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In terms of study design, only 9 studieswere prospective studies45,49,57–63

and 2 were case-control studies64,65, and the remaining studies were cross-
sectional in design. The publication dates of these studies ranged from 2011
to2024,with themajority (n = 74) published in thepastfive years.Trendline
analysis indicates a clear trajectory in the number of studies, reflecting the
increasing interest in using AI models for diagnosing and predicting AD
through digital biomarkers, as shown in Fig. 17a. From a geographical
perspective, these studies were conducted across 19 different countries in
Asia, Europe, Africa, North America, and South America. China con-
tributed the highest number of studies (n = 23), followed by the United
States (n = 16) and Japan (n = 9), as shown in Fig. 17b.

Distribution of digital biomarker research types
Among the included studies, there were:
• 13 studies based on gait digital biomarkers26,46–49,66–73

• 10 studies based on manual digital biomarkers27,41,57,58,74–79

• 11 studies based on eye movement digital biomarkers39,40,80–88

• 12 studies based on speech digital biomarkers42,50,51,59,60,64,65,89–93

• 13 studies based on ICT device-based digital testing biomarkers52,53,94–104

• 13 studies based on multi-type digital biomarkers43,44,61,105–114

• 6 studies based on home activity digital biomarkers54–56,62,63,115

• 5 studies based on physiological signals116–120

• 1 study based on non-ICT or dedicated device testing121

• 1 study based on other biomarkers122

• and 1 study based on driving behavior45

We have summarized the basic information and main findings from
these studies, which are detailed in Supplementary Tables 3 to 13.

Specific algorithm usage
In a reviewof 86 studies ondigital biomarkers forAD, researchers employed
various machine learning algorithms to enhance the accuracy of disease
prediction and classification. Each algorithm differs in its data processing
capabilities and model complexity, making the selection of an appropriate
classifier crucial to the reliability of study outcomes. Details on the types of
algorithms used and the distribution of optimal models can be found in
Supplementary Table 14.

Statistical analysis revealed that support vector machines (SVM) were
the most commonly used algorithm, appearing in 49 instances. Logistic
regression (LR) and random forests (RF) were also widely used, with 38 and
32 instances, respectively. In contrast, simplermodels, such as decision trees
(DT) and naive Bayes (NB), were used less frequently, with 14 and 7
instances, respectively. Although these simpler models offer advantages in
terms of computational cost and interpretability, they are less effectively in
handling thehigh-dimensional, complexdata typical ofAD,which accounts
for their limited usage. Additionally, neural networks (NNs), with their

Fig. 9 | Production,Distribution andTrends ofVariousTypes ofAlzheimer’sDiseaseDigital Biomarkers.The pie chart is used to represent the proportion of research on
different types of digital biomarkers, while the line chart illustrates the trend of changes in various digital biomarkers over time.

Fig. 10 | Sample Size Distribution in Alzheimer’s Disease Digital Biomarkers
Research. The violin plot displays the distribution of sample sizes for research on
each type of digital biomarker. The different colors of the violins represent distinct
categories of digital biomarker research. The body of the violin represents the
primary distribution range of the research, withwider sections indicating a higher
number of studies and narrower sections representing fewer studies.
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robust capacity for nonlinear feature extraction, were applied 27 times.
Ensemble learning models, such as gradient boosting and XGBoost, were
used in 11 and 9 times, respectively, demonstrating their potential for
handling nonlinearity and high-dimensional data. Further details are pro-
vided in Fig. 18a.

Overall, the selection of algorithms in AD digital biomarker
research is diverse, reflecting various efforts to enhance model
accuracy and robustness. Specifically, SVM has been the most widely
applied algorithm across different types of digital biomarker studies.
For instance, in speech biomarkers research, SVM has been used 9

times, demonstrating its effectiveness in handling high-dimensional
audio data, such as frequency, pitch, and rhythm. By maximizing the
decision boundary and selecting the optimal hyperplane, SVM offers
robus classification capabilities. LR and RF have also been frequently
employed. As a linear model, logistic regression, is simple yet offers
strong interpretability. In contrast, random forests improve model
robustness and noise resistance by integratingmultiple decision trees,
making them particularly well-suited for large feature spaces and
complex data distributions. Neural networks, while excelling in
processing large-scale data, are sometimes limited by their high

Fig. 12 | Core Author Collaboration in Alzheimer’s Disease Digital Biomarkers
Diagnostic Research. aNetwork diagramof core author collaboration. Color coding
is used to display clusters, with researchers within the same cluster sharing the same
color. The size of the circles increases with the number of publications. b Average

timeline of core author collaboration initiatives. Color coding is used to represent the
average time for constructing researcher collaboration networks. The size of the
circles increases with the number of publications.

Fig. 11 | A sankey diagram of the devices and paradigms commonly used in the collection of different digital biomarkers. The left column shows the data collection
paradigms, the middle column represents different types of digital biomarkers, and the right column lists the devices used for data collection.
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computational complexity and reliance on large amounts of labeled
data. Further details are provided in Fig. 18b.

Of the 86 studies included, 44 compared the performance of two or
more algorithms. Among them, 17 studies identified SVM as the best
classifier, followed by neural networks in 8 studies and logistic regression in
6 studies. Further details are provided in Fig. 18c. Several studies also
conducted in-depth comparisons of multiple model architectures. For
example, in eye-tracking research, 12 convolutional neural network (CNN)
models were compared, with the MC-CNN ultimately selected for
classification80. In physiological signal studies, 7 models were compared,
with the K-nearest neighbors (KNN) model performing the best116. For
studies focusing on home activity, 8 models were evaluated, and the deep
neural network (DNN) achieved the highest performance56.

Notably, in specific categories of digital biomarker research, SVM has
consistently demonstrated superior performance across multiple domains.
For instance, in studies on speech, gait, and eye-tracking, SVM was
repeatedly been identified as the best model (Fig. 18d). Moreover, some
studies have optimizedmodel performance through innovative architecture
designs. For example, in eye-tracking research, a deep learningmodel based

on a nested autoencoder (NeAE-Eye) was proposed, which effectively
leveraged eye-tracking data for AD diagnosis83. In gait analysis, an adaptive
neuro-fuzzy inference system (ANFIS), combining artificial neural net-
works and fuzzy logic, was employed for classification and prediction68. The
selection and design of these models various strategies aimed at improving
disease prediction accuracy and advancing early diagnosis and personalized
treatment.

Feature distribution of digital biomarkers
In the process of feature selection, the lack of unified standards and the
variety of feature types generated during measurement remain significant
challenges in AD digital biomarker research. Similarly, differences between
digital biomarker types, measurement devices, and paradigms contribute to
variations in data collection, further complicating the research process. All
studies reported the typesof features they employed. In gait studies, themost
frequently used featureswere spatiotemporal features, employed in 12out of
13 studies, followed by gait variability features, used in 6 studies. In the 10
manual digital biomarker studies, trajectory and temporal features were
most commonly used, appearing in 8 studies, followed by pressure features,

Fig. 14 | Distribution of participants by disciplinary backgrounds in various
types of Alzheimer’s disease digital biomarkers research. LM limbmovement, EM
eyemovement, TMTest onmobile or ICT devices, SM Speechmarkers, NDNatural
driving, HAHome activity, UL non-dedicated ICT biomarkers, SP Sleep pattern, BP

Biofeedback or physiological signal, Other Other biomarkers, Multiple Mutiple
biomarkers.) The size of the circles represents the frequency, with larger circles
indicating higher frequencies. Different colors represent different disciplines.

Fig. 13 | Participation Rate of Disciplinary Backgrounds in Alzheimer’s Disease Digital Biomarkers Research. a Annual participation rate changes in medical-related
disciplines. b Annual participation rate changes in engineering-related disciplines.
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used in 7 studies. In the 11 eye movement studies, fixation features were
most prevalent, found in 8 studies. In the 12 speech biomarker studies,
acoustic features were included in 11 studies. Among the 13 studies invol-
ving mobile or specialized ICT device testing, task count features were used
in 10 studies. In the 5 biofeedback or physiological signal studies, frequency-
domain features were used in all of them. Among the 13 multi-type digital
biomarker studies, EEG featureswere included in 6different studies. In the 6
home activity studies, all employed spatial and activity pattern features.
Additionally, studies on natural driving behavior, non-ICT device testing,
and other types of digital biomarkers utilized their respective unique fea-
tures, as shown in Fig. 19 and Supplementary Table 15.

The performance of AI model
Due to the objective differences in research methods and feature types, we
did not directly compare the performance across studies. Instead we pre-
sented and described the performance distribution in various tasks of digital
biomarker research.

A total of 21 studies conducted binary classification between AD and
healthy controls, including 2 fromgait studies69,71, 6 frommanual biomarker
studies27,57,74,77–79, 7 from eye movement biomarker studies39,40,80,81,83,85,87, 1
from ICT device-based digital testing96, 2 from multi-type biomarker
research111,114, 1 from Biofeedback research120, 1 from home activity bio-
marker research115, and 1 from other research122. In terms of performance,
the overall Area Under the Curve (AUC) ranged from 0.76 to 1, with an
average AUC of 0.887. Accuracy (ACC) ranged from 0.73 to 1, with an
average ACC of 0.911. Sensitivity (SEN) ranged from 0.71 to 1, with an
average SEN of 0.909. Specificity (SPE) ranged from 0.57 to 1, with an
average SPE of 0.889.

A total of 45 studies performed binary classification betweenMCI and
HC, including 7 from gait studies47,48,66–68,72,73, 7 from manual biomarker
studies57,58,74–78, 1 from eye movement studies82, 8 from speech biomarker
studies50,60,64,65,89,91–93, 6 from ICT device testing94,96–98,103,104, 10 from multi-
type biomarker studies61,105–113, 2 from physiological signal studies118,119, 3

from home activity studies54,62,63, and 1 from non-ICT device research121. In
terms of performance, the overall AUC ranged from 0.62 to 0.97, with an
average AUC of 0.821. ACC ranged from 0.53 to 1, with an average ACC of
0.825. SEN ranged from0.46 to 1,with an average SENof 0.817. SPE ranged
from 0.68 to 0.99, with an average SPE of 0.825, as shown in Fig. 20.

Surprisingly, only 7 studies have performed ternary classification
between AD, MCI, and HC, coming from gait research70, Multiple
categories111, manual research74, eye movement research84,88, and ICT
device-based digital testing95,102. Additionally, 3 studies performed binary
classification between AD and MCI, 2 of which were manual biomarker
studies57,78 and 1 was a speech biomarker study42. Detailed performance
metrics for each study are provided in Supplementary Table 16.

In studies using different digital biomarkers to distinguish betweenAD
and HC, two gait studies69,71 did not report AUC metrics, but their ACC,
SPE, and SEN were all greater than 0.9. Among the six manual biomarker
studies27,57,74,77,78, five studies reported ACC greater than 0.957,74,77–79, while
one study reported an ACC of 0.7627. Three studies77–79 did not report AUC
metrics, and two studies27,77 did not report SEN and SPE metrics. In the
seven eye movement biomarker studies, four studies80,81,83,85 reported ACC,
all greater than 0.8. AUC values were reported in four studies, ranging from
0.76 to 0.9939,40,80,87. Although various digital biomarkers have demonstrated
relatively high accuracy in distinguishing AD from HC, the reporting
standards across studies are inconsistent, particularly concerning key
metrics such as the AUC, SEN, and SPE. The performance metrics for the
remaining categories of digital biomarker studies are shown in Fig. 21.

In studies distinguishing MCI from HC, all seven gait biomarker stu-
dies reported specific ACC values47,48,66–68,72,73, with all ACCs values greater
than 0.7. One study, which used aKinect-V.2 camera to capture gaitmetrics
and combined with an Adaptive Neuro-Fuzzy Inference System, achieved
an ACC of 0.9368, while the lowest two studies reported ACCs of only 0.72
and 0.766,67. Only three studies reported specific AUC values, ranging from
0.83 to 0.8948,66,73. Six studies reported specific SEN values, all above
0.847,48,67,68,72,73. Among the seven manual biomarker studies, six studies
reported specific ACC values, all above 0.757,58,74,76–78. All speech biomarker
studies reported specific ACC values, with a wide range. The highest ACC
reached 0.9560, while the lowest was only 0.5391, with the remaining studies
reporting ACCs above 0.6. In the ten multi-type biomarker studies61,105–113,
all studies reported specific ACC values, all of which showed high accuracy,
with ACCs above 0.8, as shown in Fig. 21. These results suggest that gait,
manual, vocal, andmulti-type biomarkers exhibit a certain level of accuracy
in distinguishing MCI from HC.

Sample balance and missing data handling
Differences in task accessibility between groups can lead to sample imbal-
ance during data collection. This imbalance can prevent models from
effectively learning the characteristics of all groups during training, ulti-
mately impacting model generalization and distorting evaluation metrics.
We included 12 studies that reported and employed sample balancing
techniques. Five studies66,73,76,82,103 used methods based on Synthetic Min-
ority Oversampling Techniques (SMOTE), with two studies employing
variants: SVMSMOTE66 and BorderlineSMOTE103. Four studies utilized
data augmentation methods79,80,96,121, one used stratified sampling27, one
applied cost-sensitive learning54, and one study mentioned resampling for
sample balancing without specifying the method used46.

Due to differences in task accessibility and execution difficulty,missing
data is a common challenge in research and can significantly impact study
outcomes and conclusions. Despite its importance, only 14 studies reported
their handling ofmissing data. Three studies used listwise deletion43,55,56, one
of the simplest and most direct methods for addressing missing data, but it
can limit the available data formodel development and introduce bias if the
remaining sample is not representative. Eight studies used mean
imputation52,73,98,99,107,110,111,114, two studies used Multiple Imputation by
Chained Equations (MICE)27,41, and one study used zero imputation65.
Details information on sample balancing and missing data handling
methods can be found in Supplementary Table 17.

Fig. 15 | Heatmap of Interdisciplinary Collaboration Among Disciplines. The
size and color of the sector areas represent the strength of collaboration between
different disciplines. The redder the color and the larger the sector area, the stronger
the collaboration between disciplines.
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Fusion of multiple data modalities
Different types of digital biomarkers often complement each other in
research. Information fusion strategies in machine learning are gen-
erally categorized into four types: early fusion, mid-level fusion, late
fusion, and hybrid fusion. Early fusion involves integrating all mod-
alities at the initial stage and inputting the combined data into a single
model for training123. Mid-level fusion extracts features progressively
by using the output of one model as the input for another, allowing for
iterative feature extraction and optimization123. Late fusion models
each modality separately, subsequently integrating the results, often

through weighted averaging or votingmechanisms to generate the final
predictions123.

Research on various digital biomarkers has demonstrated different
fusion strategies: four studies employed early fusion strategies108,111,113,114;
four studies utilized mid-level fusion61,105,106,109; three studies applied late
fusion43,110,112; and two studies adopted hybrid fusion44,107. From the per-
spective of feature sources, six studies utilized EEG signals collected via
portable EEG devices106–108,110,112,113. Only one study incorporated traditional
imaging biomarkers into the analysis105. Furthermore, Yasunori Yamada’s
study111 developed a multimodal model based on three prevalent digital

Fig. 17 | Spatial-temporal distribution of research output. a Distribution of
research years in AI model-based studies on digital biomarkers for Alzheimer’s
disease diagnosis and prediction. The red dashed line represents the trend line

(aTrend line:y = 0.2026x2–1.549x+ 3.0714). b Regional distribution of AI model-
based studies on digital biomarkers forAlzheimer’s disease diagnosis and prediction.

Fig. 16 | The Process of Developing AI Models for Alzheimer’s Disease Digital
Biomarkers. a Recruiting Alzheimer’s disease patient samples to form the study
cohort. b Collecting data from multiple devices, including wearables, smartphones,
and others. c Using sensors, mobile applications, and other tools to acquire various

digital biomarker data. d Extracting and analyzing feature data such as movement,
speech, eye movement, and physiological signals. e Selecting appropriate machine
learning and AI algorithms to train predictive models. f Applying the models for
disease classification and prediction, aiding in early detection and management.
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biomarkers: gait, manual movement, and speech. In contrast, Aoyu Li108

integrated physiological signals, such as electrodermal activity, heart rate
variability, and EEG, with cognitive test data during digital cognitive
assessments to conduct a multidimensional analysis.

In these studies, the performance of unimodal and multimodal com-
binations of biomarkerswas thoroughly compared, with results consistently
demonstrating that multimodal models outperformed unimodal models
overall. For example, Se Young Kim’s multimodal model109, which com-
bined eye-tracking and manual data, improved accuracy by 13.3% com-
pared to the unimodal model using only manual data. Similarly, Yasunori
Yamada’s study111 showed that amodel integratingmanualmovement, gait,
and speech biomarkers achieved an 11.1% increase in accuracy in a ternary
classification task compared to a model using only speech data. These
findings indicate that integrating information from multiple data sources
enhances diagnostic accuracy. For a detailed comparison of the best-
performing unimodal and multimodal models, can be found in Supple-
mentary Table 18.

Validation of AI models
An effective predictive model is characterized by its ability to accurately
estimate individual risk—meaning that the predicted outcomes align closely
with actual outcomes, reliably distinguishing between high-risk and low-
risk individuals (discrimination), and performing well across different
populations124. Calibration and discrimination can be evaluated through
internal validation (using the same dataset as the one used to develop the
model) or external validation (using a different dataset). External validation
is generally preferred as it more comprehensively assesses a model’s
generalizability125. However, in AD digital biomarker studies, 7 studies did
not explicitly state whether they performed internal or external validation,
and only 2 studies conducted both internal and external validation52,57 One
manual biomarker study used temporal validation, testing the model with
follow-up data collected one year later57. Another study used the external
dataset from the ADNI-3 cohort for validation52. In terms of internal vali-
dation, most studies employed validation methods appropriate for small
sample sizes. Specifically, 38 studies used k-fold cross-validation, while

4 studies adopted the more rigorous nested cross-validation, and 2 studies
utilized stratified cross-validation. Additionally, 24 studies opted for leave-
one-out cross-validation, and 2 studies employed leave-two-out cross-
validation. In contrast, other validation methods, such as the hold-out
method, are used less frequently. Moreover, model calibration is crucial for
evaluating predictive performance, but only 4 studies44,52,87,100 used calibra-
tion plots or the Hosmer-Lemeshow test to assess model calibration.
Detailed information on validation methods and calibration approaches
used in each study can be found in Supplementary Table 17.

Reproducibility and reporting standards
Transparency and reproducibility are fundamental pillars of robust scien-
tific research. This necessitates adherence to the Transparent Reporting of a
multivariable prediction model for individual prognosis or diagnosis
(TRIPOD) guidelines in studies involving AI predictive models, as well as
the publication of code to enhance reproducibility126. However, among the
86 studies examined, only one explicitly acknowledged adherence to the
TRIPOD guidelines40, and two studies made their research code publicly
available40,120. This omission undoubtedly undermines the credibility and
applicability of AI predictivemodels in themedical field. Further details can
be found in Supplementary Table 17.

Description of data missing in device collection
Data quality is critical in the development and application of AI models,
especially during the training and inference stages. Studies have shown that
in 26 reports on data collection, all provided specific descriptions of issues
related to data missing. These included 3 gait studies, 3 manual biomarker
studies, 4 eye movement studies, 5 speech studies, 4 tests on ICT or mobile
devices, 2 physiological signal studies, 2 multi-type biomarker studies, 2
home activity studies, and 1 other type of study. The number of excluded
samples due tomissing data ranged from1 to 474 individuals. The excluded
sample size accounted for 0.69% to 58.52%of the total sample in each study.

In terms of reasons for data exclusion, 8 studies reported issues with
technical devices (e.g., equipment malfunction), 6 studies cited patient or
participant-related reasons (e.g., inability to complete tasks, refusal to

Fig. 18 | Distribution of AI Model Algorithms Used in Alzheimer’s Digital
Biomarkers. a Overall Use of AI model algorithms. b Distribution of AI model
algorithm use across different types of digital biomarkers. c Use of AI model

algorithms in comparative studies betweenmodels. dUse of AImodel algorithms in
comparative studies of different types of digital biomarkers.
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participate in measurements), 2 studies faced problems with patient
inclusion or exclusion during the research design, 1 study had issues related
to data management or uploading, and 6 studies had two or more factors
contributing to data loss and sample exclusion.These challenges further
reduced the available sample sizes, highlighting areas that require closer
attention in future research. Further details can be found in Supplementary
Table 19.

Gait biomarker collection devices, specific tasks, and feature
descriptions
Various technical methods, such as wearable devices, depth cameras, and
pressure sensors, have been used to capture subtle gait variations, revealing
differences in patients’movement patterns during static and dynamic tasks.
These findings further support the idea that gait analysis is an effective tool
for assessing cognitive function. Among the 13 studies on gait digital

biomarkers, 4 used wearable devices for data collection47,49,66,67, 3 used
electronic walkways26,48,70, 5 used the Kinect camera68,69,71–73, and 1 study
employed a Doppler radar system46.

In terms of task selection and execution, 3 studies used simple single-
task 10-meter walking tests46,71,72, while 7 studies employed both single-task
and dual-task walking tests26,48,66–68,70,73. It’s important to note that although
the single-task and dual-task tests aim to analyze cognitive load and beha-
vioral performance during walking, there are subtle differences in task
design. For instance, in addition to the common task of walking while
counting backward, there are more complex dual tasks, such as walking
while answering questions and performing a chip exchange66, or simpler
tasks like a 10-meter walk71 versus designs with obstacles. Overall, AD and
MCI patients with cognitive decline exhibit different performances in terms
ofwalking spatial, temporal, andvelocity characteristics, aswell as variability
in these features.

Fig. 19 | Sunburst Chart Showing TheDistribution of Specific FeaturesUsed inVariousDigital Biomarker Studies.Pie segments of the same color represent the features
used in research on the same type of digital biomarker. The size of the segments indicates the frequency of feature usage, with larger areas reflecting more frequent usage.
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Finger movement biomarker collection devices, specific tasks,
and feature descriptions
In the 10manual biomarker studies, various drawing andwriting taskswere
performed, including the Trail Making Test (TMT)27,57,74, Clock Drawing
Test (CDT)27,41,74,75,78, writing a sequence of ‘ℓ‘ letters79, pentagon copying
tasks, and sentence writing tests27,74. These tasks are primarily used to assess
individuals’ executive function, visuospatial abilities, and writing skills,
which are often impaired to varying degrees in AD and MCI patients.
Additionally, devices such as digital tablets and pens, touchscreen systems,
and electromagnetic tablets can capture not only static results of writing and
drawing but also subtle changes during the dynamic process.

Overall, cognitively impaired patients exhibit significantly different
performances in these tasks compared to healthy controls. For instance,
differences have been observed in drawing speed27, pressure fluctuations74,
speed variability74, pause time75, and smoothness76.

Eyemovement biomarker collection devices, specific tasks, and
feature descriptions
The 11 eye movement studies included various types of systems, ranging
from custom-built setups80,81,83 to commercial devices39,40,82,84–88, and exam-
ined different visual tasks, particularly those assessing patients’ visual
attention and eyemovement control. Saccade, fixation, and visualmatching
tasks were the primary paradigms. Overall, these studies indicated that AD
andMCI patients exhibited significant cognitive deficits during visual tasks.
For example, in visual matching and visual search tasks, patients’ fixation
locations80, fixation durations80, and visual exploration levels differed
markedly from those of healthy controls, especially in tasks requiringprecise
fixation and quick responses.

These differences were not only reflected in fixation duration and eye
movement paths but also in more subtle features such as visual attention
heatmaps83, eye movement speed81, and fixation stability85. Additionally,
using data from various eye-tracking devices, such as custom non-invasive
eye-tracking systems, the Tobii Pro Spectrum system, and the Eyelink II
head-mounted eye tracker, researchers found that AD patients showed
higher error rates and lower accuracy in error inhibition82, error correction82,
and fixation precision81,85. Quantitative light reflex pupillometry has shown
that AD patients have significantly lower average and maximal pupil con-
striction velocities than healthy controls40. Recent studies also indicate that
eye-tracking data from tablet devices provides diagnostic performance
comparable to traditional commercial systems. For example, Qinjie Li et al.
used a Xiaomi Mi 5 Pro tablet to capture eye movement data (latency,
accuracy, and duration) and developed a logistic regression model that
differentiatedADpatients fromhealthy individualswith 82%sensitivity and
91% specificity87.

Speechbiomarker collectiondevices, specific tasks, and feature
descriptions
Twelve studies utilized speech recognition and recording devices to assess
language and cognitive functions. These studies employed various tech-
nological platforms, including automatic speech recognition systems, digital
tablets, and wearable devices, covering a range of task paradigms from
picture description and verbal fluency tests to conversation tasks and
memory tests. Overall, MCI patients exhibited significant impairments in
language expression and cognitive function, particularly in tasks involving
verbal fluency, complex language generation, and memory.

These differences were evident not only in the complexity of language
content, such as the number of semantic clusters and word repetition

Fig. 21 | Box plot of AIModel Performance for Binary Classification Based on AD orMCI versus HC. aAUC for AD and HC Classification, (b) ACC, (c) SEN, (d) SPE.
e AUC for MCI and HC classification, (f) ACC, (g) SEN, (h) SPE.

Fig. 20 | The Box plot of Binary Classification Performance Based on AD and
MCI AI Models. Each point in the box plot represents an individual study. The
horizontal line inside the box indicates the median of the data, while the whiskers
represent the range of the maximum and minimum values. Data points outside the
whiskers are considered outliers.
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frequency50, but also in acoustic features like pitch51, jitter89, and spectral
characteristics90,92. For instance, in picture description tasks conductedusing
the AcceXible platform, patients’ vocal spectral features, such as F3 band-
width and Hammarberg index, showed noticeable abnormalities90. These
features reflect the stability and consistency of vocal production during
language generation.

ICT-based testing biomarker collection devices, specific tasks,
and feature descriptions
In 13 studies using touchscreen devices, virtual reality (VR) equipment, and
computer technology to assess cognitive function in AD andMCI patients,
cognitive function was evaluated across multiple dimensions, including
memory, attention, executive function, and spatial navigation ability. These
digitized tests were able to distinguish different levels of cognitive impair-
ment. For example, in the digital Chinese Neuropsychological Consensus
Battery (CNCB) test conducted on touchscreen devices, patients exhibited
significant cognitive deficits in word recall, task completion time, and
accuracy in reverse sequence memory52. In the dual-task balance ball test,
patients exhibit increased cognitive load when facing multi-tasking, as
evidenced by higher dual-task costs and reduced time spent in the inner
circle, reflecting difficulties in both balance control and attention
allocation102. Similarly, in the VR virtual supermarket task, patients’ navi-
gation trajectories, task execution time, and behavioral data showed
abnormalities96,97,103, reflecting difficulties in spatial memory and task
planning.

Biofeedback and physiological signal biomarker collection
devices, specific tasks, and feature descriptions
Studies on biofeedback and physiological signals are relatively scarce, with
only five studies focusing on this area. These studies provided profound
insights into patients’ neurophysiological characteristics by analyzing brain
electrical activity and heart rate variability. For example, in a computer-
based cognitive task using the Active Two BioSemi system, patients’ EEG
signals displayeddistinct phase characteristics, frequency band features, and
time-domain properties116, which may be associated with cognitive decline.
Additionally, in resting-state EEG activity recorded using the Bitbrain
multifunctional wireless wearable system, patients exhibited abnormalities
in relative power characteristics, spectral entropy, andHjorth complexity117,
which may reflect brain function dysregulation.

Multi-type biomarker collection devices, specific tasks, and
feature descriptions
Thirteen studies onmulti-type biomarkers (multimodal digital biomarkers)
combined virtual reality (VR), EEG, eye-tracking, and other sensing devices
to assess AD andMCI. These studies aimed to gain deeper insights into and
detect changes in cognitive function by analyzing physiological signals,
behavioral data, and language features. In studies combining EEG and eye-
tracking, patients displayed abnormalities in event-related potentials (ERP),
power spectral density, and eye movement characteristics during resting-
state and delayed matching tasks105, further indicating deficits in visual
processing and cognitive control. Similarly, in a language description task
using wearable EEG devices (such as the MUSE 2) combined with VR
equipment (such as the Oculus Quest 2), significant abnormalities were
revealed in both speech generation and brain electrical activity107. In a
CERAD cognitive task, individuals with MCI exhibited reduced brain
electrical activity and heart rate variability (HRV), which may indicate
dysregulationof autonomicnervous function113. Themultimodal evaluation
approach,which integratesmultiple digital and sensor devices, offers amore
comprehensive understanding of the cognitive changes in AD and MCI
patients.

Home activity biomarker collection devices, specific tasks, and
feature descriptions
Six studies on home life monitoring used various sensors, such as door
sensors55,63,115, infrared motion sensors54,56,62,63, location sensors55, and sleep

sensors55, to capture behavioral patterns and activity features, aiming to gain
deeper insights into changes in cognitive function. Using wireless motion
sensor nodes and passive infrared sensors, researchers analyzed spatial
movement features, activity intensity, and activity pattern characteristics,
further revealing the reduced complexity of movement and decreased
activity intensity in patients performing daily tasks56.

Similar studies employed more complex sensor combinations, such as
vibration sensors, temperature and humidity sensors, and Lidar sensors, to
analyze behavioral patterns, frequency and duration of daily activities, and
nighttime activity patterns115. These detailed monitoring data helped
uncover the patterns and behavioral abnormalities in patients’ activities
throughout different times of the day.

Furthermore, studies utilized complexity analysis methods based on
sensor data, such as loop complexity, entropy, room transition features, and
fractal indices54. By calculating these features, researchers were able to
quantify changes in behavioral patterns, particularly in terms of environ-
mental transitions and the complexity of activities.

In addition, several studies analyzed GPS data to capture outdoor
activity features, driving behaviors, and interactions with non-dedicated
ICT devices, providing further insights into patients’ digital interaction
behaviors. For specificdetails regarding thedata acquisitiondevices and task
paradigms, please refer to Supplementary Tables 20 to 30.

Discussion
Through an in-depth analysis of the scientific output, interdisciplinary
collaboration, and key advancements in AI model research within the field
of AD digital biomarkers, we gain a comprehensive understanding of the
current landscape, revealing several challenges and limitations. To structure
the discussion more systematically, we categorize these issues into three
major areas: the current state of the field, key challenges and obstacles, and
emerging directions for future development. Detailed analysis is presented
in Fig. 22a.

To effectively address these challenges, the key dimensions of clinical
implementation can be conceptualized as a pyramid structure. At the base
lies the conceptual framework, followed by partnerships, equipment and
infrastructure, technological advancements, with regulatory requirements
positioned at the apex. This structure illustrates that successful clinical
application of digital biomarkers requires coordinated efforts across mul-
tiple levels. Standardization and privacy/data security present regulatory
challenges, while AI models primarily face technical obstacles. The devel-
opment of devices is influenced by commercial funding, and international
and interdisciplinary collaborations drive scientific progress in this field.
Terminology usage and clinical acceptance shape the conceptual framework
of digital biomarkers.Additionally, large-scale studies and further validation
arenecessary for clinical adoption, bothofwhichare significantly affectedby
the aforementioned five dimensions. The overall challenge framework at
this stage is detailed in Fig. 22b.

Figure 22c illustrates the interrelationship between the key challenges,
current status, and future outlook in the field of AD digital biomarkers,
highlighting the complex, intertwined network among these elements. For
instance, both AI model research and other types of studies face the chal-
lenge of limited sample sizes, which constrains progress. The training of AI
models, in particular, demands larger datasets and more extensive data for
robust training. Barriers within the scientific publishing ecosystem have
resulted in fragmented research outputs, further hindering the overall
advancement of the field. Nevertheless, future research directions are
becoming clearer, encompassing home-based testing, the development of
consumer-grade devices, the implementation of large-scale longitudinal
studies, and the application of advanced algorithms. In the following sec-
tions, we will delve deeper into our key findings.

Currently, the body of research on digital biomarkers in the diagnosis
and assessment ofAD is steadily growing, indicating a rapidly evolvingfield.
Specifically, a notable inflection point occurred in 2019, likely driven by
technological advancements and shifts in conceptual frameworks.
• Technological Advancements:
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1. The widespread adoption of big data and cloud computing tech-
nologies has enabled researchers to process and store large-scale
datasets, significantly expanding the application and in-depth study
of digital biomarkers. 2. Progress in machine learning and AI has
made handling high-dimensional data more efficient and feasible127.
3. Continuous advancements in digital devices, such as wearable
devices and smartphones, have provided higher-quality and more
granular data sources128.

• Conceptual Shifts:
The COVID-19 pandemic has accelerated the adoption of digital
diagnostics for neurodegenerative diseases, greatly increasing the
acceptance of digital technologies and devices129. 2. Compared to
traditional diagnostic approaches, cost-effective and non-invasive
methods are gainingwidespread attention130, further fueling the surge
in research on digital biomarkers. More research outcomes in this
area are anticipated in the near future.

The use of keywords reflects researchers’ understanding of the field.
Our research indicates that only 34 studies, accounting for 7.89%of the total
output, used “digital biomarkers” as a keyword. This term only began
gaining broader recognition among researchers after 2020, suggesting that
the awareness of this terminology in the field remains limited. Christian
et al.131 also pointed out that many related studies did not explicitly use this
term, possibly due to inadequate dissemination or confusion with other
concepts, such as “clinical outcome assessments“12. To enhance the repro-
ducibility and impact of research, it is essential to clarify and promote
standardized terminology132. The DACIA framework (Data, Aggregation,
Contextualization, Interpretation, and Action)133 offers a structured
approach, facilitating the systematic collection and analysis of data by
researchers. Additionally, categorizing digital biomarker studies into four
dimensions—population, devices, tasks, and data—helps to clarify the
research process. Through interdisciplinary training and educational
resources, such as online courses, workshops, and seminars, researchers can
further improve their understanding and use of these terms. In summary,

while the application of digital biomarkers in AD research is steadily
increasing, the standardization and dissemination of terminology still
require further improvement. By establishing a structured framework and
promoting widespread use of these terms, future research will achieve
greater reproducibility and international impact.

Overall, funding for digital biomarker research in AD has shown a
fluctuating upward trend, with each study receiving an average of about 3.5
grants. However, the majority of this funding comes from government
agencies, while support from private companies or consortia remains
relatively limited. In traditional biomarker research and drug development,
corporate funding has played a pivotal role in driving both research and
commercialization134. Digital biomarker research heavily relies on various
digital tools, such as the Eyelink eye-tracking device135 and the GaitRite
electronic walkway system136, which are typically developed by companies.
Currently, the FDA is promoting the SaMD (Software as aMedical Device)
initiative to streamline and regulate the approval processes for medical
software, while encouraging companies to develop more advanced and
reliable digital biomarker devices137. A successful example is Altoida, a U.S.-
based company whose predictive machine learning algorithm was granted
breakthrough device designation by the FDA in 2021. The company
received significant corporate funding to further its research on predicting
the progression from mild cognitive impairment to AD35. Therefore,
increasing financial support from corporations and consortia, whether
through direct investment or collaborations with research institutions, will
provide more opportunities for the development and adoption of digital
biomarkers, ultimately advancing innovation and progress in the field.

The United States is undoubtedly a core contributor to the field of
digital biomarkers in AD. However, international collaboration remains
relatively limited in other high-output countries, particularly China, South
Korea, and Japan, where research tends to focus on internal collaborations.
In contrast, European countries demonstrate a stronger willingness for
cross-border cooperation, although this is often confined to neighboring
nations. This trendbenefits from theknowledge spillover effect facilitatedby
geographic proximity, which promotes innovation and the flow of tacit

Fig. 22 | Discussion on Digital Biomarker Research for Alzheimer’s Disease.
a The current multidimensional landscape of digital biomarkers in Alzheimer’s
disease. b The five key dimensions of the challenges in clinical implementation of
digital biomarkers. c The relationship between the main challenges, current status,

and future prospects in the field of digital biomarkers for AD. The color of the circles
represents the hierarchical relationships of the topics, while the arrows indicate the
connections and directional relationships between all topics.
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knowledge138. Given the heterogeneity of dementia, there is a pressing need
for multicenter collaborative studies to address its complexity. Establishing
larger international collaboration platforms, providing funding and policy
support, and sharing data and resources would further promote global
cross-border cooperation. This would not only improve research quality
and efficiency but also offermore treatment hope for dementia patients. For
instance, the U.S.-led Framingham Heart Study, which collects data from
diverse racial groups139, and the ADNI project, centered around traditional
biomarkers140, have already fostered international cooperation on a global
scale. Future efforts could look to replicate these models to establish more
international collaborative projects.

Digital biomarkers have the advantages of being cost-effective, non-
invasive, andeasily repeatable, offering great potential for large-scale studies.
However, to date, only a limited number of large-sample studies have been
conducted, primarily in gait analysis and digital testing, falling short of
expectations.Theprimary limitationsmaynot stem fromtechnical issues, as
the large-scale analytical capabilities of machine learning and deep learning
havebeenwell demonstrated in traditional biomarker research.The limiting
factors may include insufficient funding, limited access to equipment,
patient acceptance, and the complexity of testing protocols. For example,
home activitymonitoring requires the installation of embedded sensors and
cameras141, while natural driving behavior studies necessitate onboard
devices142, both of which could raise concerns about intrusiveness. Addi-
tionally, long-term longitudinal studies are prone to external disruptions143.
Despite the increasing prevalence of digital devices, activity monitoring,
which closely reflects daily life, still faces challenges such as computer lit-
eracy anddevicemaintenance (e.g., recharging),which impact the feasibility
of large-scale studies. Regardless of the type of digital biomarker, large-
sample validation is essential. Only through comparative studies with tra-
ditional biomarkers can digital biomarkers be widely applied in clinical
screening and diagnosis.

Research on digital biomarkers for AD primariy focuses on motor
activity, speech, eye movement, and digital assessments. These biomarkers,
which are closely tied to daily life functions, utilize established technologies
and algorithms such as gait analysis, speech recognition, and eye-tracking to
capture early AD-related behavioral changes. Notable features, including
gait abnormalities144,145, speech fluency changes146, and slowed eye
movements147, have shown high correlation with early cognitive decline
associated with AD. However, their specificity is limited, as similar
abnormalities are seen in conditions like Parkinson’s disease, amyotrophic
lateral sclerosis, and general frailty in the elderly, and other diseases148–150,
which reduces their unique diagnostic value for AD. Additionally, envir-
onmental factors (e.g., lighting, posture) and cultural differences (e.g., lan-
guage) can influence performance, impacting both data accuracy andmodel
generalizability. Speech biomarkers face significant challenges in cross-
cultural and linguistic adaptation, and the dynamic nature of individual
speech further complicates data analysis151,152. Future research should focus
on enhancing the specificity of these biomarkers, developing adaptive
models that are robust across cultural and environmental contexts, and
designing personalized biomarkers to increase their clinical applicability.
Other digital biomarkers also hold valuable potential. Studies on driving
behavior have shown that abnormal cerebrospinal fluid Aβ42/Aβ40 ratios
are associated with poor driving performance142, supporting the potential of
driving behavior as a biomarker for Alzheimer’s disease. Simple, everyday
tasks such as keyboard typing and computer access logs may also reflect
cognitive decline without the need for specialized equipment153,154. Mon-
itoring of physiological signals and sleep patterns currently relies heavily on
laboratory-based polysomnography (PSG) and clinical EEG118. However,
emerging technologies such as wearable EEG devices and activity trackers
offer new possibilities for monitoring in everyday settings155. These diverse
digital biomarkers expand the toolkit for early detection of AD.

Research on digital biomarkers for AD has gained significant attention
from influential scholars, such as Morris, John C., and Kaye, Jeffrey A., but
interdisciplinary collaboration remains insufficient. The field’s highly
interdisciplinary nature, spanning sensor technology, computational

science, andneuroscience, requires researchers fromdiverse backgrounds to
advance. Despite recent efforts, participation from related disciplines like
psychiatry, psychology, and gerontology remains low. Attracting more
interdisciplinary researchers is crucial, asdemonstratedby initiatives like the
U.S. FDA’s digital health expert network156 and theGlobalAtaxia Initiative’s
consensus on smartphone sensor evaluation standards157, both of which
have successfully fostered collaboration. Educational programs, like those at
Stanford University, emphasize the importance of interdisciplinary
teams158, which could be replicated to further engage researchers from
diverse fields, such as neuroscience and engineering. Clear role definitions
across disciplines—where engineering drives technological innovation and
neurology addresses diagnostic challenges—are essential for effective
collaboration159,160. A shift to open research models and cross-disciplinary
partnerships, supported by both government and private sectors, will foster
the integration of science and technology, enhancing research quality and
advancing AD biomarker development.

Many studies suffer from small sample sizes, particularly in AD
research, where some sample sizes were fewer than 20 participants56,96,99,115.
Small sample sizes limit the generalizability and fit of AI models, often
leading to imbalanced performance across different datasets. Furthermore,
the high heterogeneity of the data exacerbate these challenges, especially
when AD andMCI share overlapping behavioral features, making the issue
of noise particularly pronounced. Improper data handling, such as
neglecting sample imbalances or ignoring methods for missing data
imputation, can result in biased or misleading performance metrics161.
However, only a few studies have provided detailed reports on howmissing
values and sample imbalances were handled. This lack of transparency
affects the reliability and reproducibility of the results. To address these
issues, future research should focus on comparing different imputation
methods and providing detailed reports on how data imbalances and
missing values are handled. This will not only improvemodel accuracy and
stability but also promote the broader application of AI models in AD
research.

Although machine learning is inherently an iterative process, and
comparing multiple algorithms can help generate more optimized pre-
dictive models162, this approach is still underutilized in existing research.
Only half of the studies compared multiple algorithms and selected the
optimal model, while the rest tested only one algorithm. Classical machine
learning models are widely used. However, in traditional biomarker
research, deep learning algorithms, such as neural networks, have gradually
become mainstream163. Deep learning models can automatically extract
features from raw data without the need for manual selection. This cap-
ability enables the models to capture more complex patterns, particularly
when dealing with high-dimensional data. Additionally, the application of
transfer learning can further enhance training efficiency. Future research
shouldmore extensively test a variety of algorithms, especially deep learning
models, to improve prediction accuracy and advance the field of digital
biomarker research.

Many studies fail to sufficiently report commonly used evaluation
metrics, making it more difficult to assess the generalizability and practical
applicability of AI models. Our analysis reveals that the average AUC,
accuracy, sensitivity, and specificity for AD vs. HC classification are gen-
erally higher than those for MCI vs. HC classification. This is likely due to
the more pronounced differences between AD and HC, whereas distin-
guishing betweenMCI andHC ismore challenging164. However, identifying
the optimal model remains challenging, as the type of features and their
combinations significantly impact model performance. Additionally, var-
iations in data collection devices may lead to differing results. Although
most models report an AUC greater than 0.75, indicating good predictive
performance165, future research should systematically report these evalua-
tion metrics, with at least specific values for AUC, ACC, SEN, and SPE, to
provide a comprehensive perspective for comparing and improving model
performance.

The lack of external validation is a major barrier to the application of
artificial intelligence models. Only two studies have conducted external
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validation, raising concerns about the generalizability of these models and
limiting their potential for clinical use. The reproducibility crisis in precision
psychiatry further underscores the importance of external validation.
Therefore, validating AI models across different settings and populations is
critical166. In addition, insufficient model calibration is another prominent
issue. Calibration is a key step in ensuring that predicted probabilities align
with actual outcomes. This is particularly important in clinical applications,
where uncalibratedmodels may increase patient risk. Thus, future research
should focus on the development and reporting of model calibration
methods to ensure accuracy and reliability in clinical settings.

The lack of code transparency and adherence to reporting standards is
a significant issue in current artificial intelligence model research. Many
studies do not follow established reporting guidelines, such as the TRIPOD
statement, compromising transparency and comprehensibility. Future
studies should prioritize compliance with these standards to improve
research quality. Additionally, the open availability of code and data is
essential for ensuring research reproducibility. However, most studies have
not made their model code and data publicly accessible, limiting the ability
of other researchers to independently validate and replicate the models. To
promote reproducibility, future work should place greater emphasis on
making model code and data publicly available, facilitating validation and
application in real-world settings. For example, Lukas et al.167 have devel-
oped and released an open-source Python package called SciKit Digital
Health, which provides a range of algorithms for digital biomarker feature
extraction. The open access to this code is expected to facilitate advance-
ments in early diagnosis, personalized treatment, and continuous
monitoring of AD.

In fact, the clinical application of digital biomarkers in AD still faces
several challenges that are unlikely to be resolved in the short term. These
include regulatory concerns around privacy and data security, the estab-
lishment of unified standards, validation of digital biomarkers, issues of
resource equity and clinical acceptance, and the inherent limitations of
artificial intelligence.

With the widespread use of digital devices and software, data privacy
and security concerns have grown increasingly important. Both devices and
software must implement stringent privacy protection measures, and
researchers and developers must comply with relevant privacy regulations.
Early diagnosis of AD involves personal health, behavioral, and biometric
data, and any data breaches could severely compromise privacy168. There-
fore, technologies such as data anonymization and encryption, including
federated learning, are crucial169. During the data collection process, it is
essential to ensure informed consent from participants, particularly early-
stage AD patients who may not fully understand the novel data collection
methods used in digital biomarkers170. Additionally, traditional privacy
regulations, such as HIPAA, face challenges in non-traditional clinical
environments171. Technology companies often manage data sharing
through end-user license agreements, which may no longer be applicable,
raising ethical concerns172. This involves different considerations from
various stakeholders, including patients, physicians, governments, and
corporations. As technology evolves, relevant laws and regulations must be
continuously updated to address emerging privacy protection challenges.

While various digital biomarkers have demonstrated good sensitivity
and accuracy in research, the field lacks clear feature definitions and unified
diagnostic standards. For instance, it remains challenging to determine the
extent of behavioral differences and ranges that constitute reliable quanti-
tative results due to the influence of multiple factors. With the ongoing
emergence of new devices, the absence of international guidelines for device
selection and usage has impeded the further development of AD mon-
itoring. Additionally, discrepancies in data measurement and non-uniform
formats across devices have created obstacles for data transmission and
sharing. Establishing standardized data transmission protocols among
similar biomarkers is therefore crucial. In terms of data processing, the lack
of standardized methods for data collection, processing, and evaluation has
increased thedifficulty of validating biomarker effectiveness173. For example,
the standardization of measurement methods and the precise placement of

wearable devices are expected to significantly improve the accuracy of gait
analysis174. Hence, developing a comprehensive set of standards that covers
AD digital biomarker selection, data processing workflows, and effective-
ness evaluation is urgently needed to advance research in this field.

The validation of digital biomarkers is a critical prerequisite for their
integration into clinical practice. To confirm their clinical effectiveness,
extensive experimentation is required, along with correlation analysis with
traditional biomarkers to ensure consistencywith clinical indicators. Digital
biomarkers should not only serve as a supplement or replacement for
existing biomarkers but, in some cases, may become new standards for
disease monitoring, prediction, and therapeutic evaluation. A major chal-
lenge in the validation process stems from the increasing granularity of
features. The complexity and multidimensionality of the data demand
additional efforts to establish links between digital biomarkers and tradi-
tional ones, often requiring multiple experimental validations. This vali-
dation process is akin to the standard reference validation of in vitro
diagnostic devices and must be given significant attention to ensure the
reliability and feasibility of digital biomarkers in clinical practice.

The diversity of devices introduces challenges related to resource
equity. Device accessibility is notably unequal, particularly among AD
patients and the elderly, where differences in digital literacy and technolo-
gical acceptance exacerbate this inequality170. Additionally, clinical accep-
tance of digital biomarkers also presents a key challenge to their widespread
adoption.Many healthcare professionals are not yet familiar with these new
technologies, and using digital biomarkers may increase their
workload175,176. Systematic training and integration initiatives will be critical
in improving clinical acceptance. Moreover, data monopolies within the
digital health sector contribute to inequality177. Some companies enforce
closed data management for wearable devices, restricting external
researchers’ access and hindering academic research and medical
innovation178.Moving forward, it will be essential to address resource equity
in these three areas.

AI has brought opportunities but still faces several limitations in digital
biomarkers. First, inconsistencies in data quality and quantity, especially
variations in data from different devices, limit the generalizability of AI
models. Additionally, the “black box” nature of AI remains a significant
issue. While models can provide accurate predictions, the lack of trans-
parency in thedecision-makingprocess hinders the establishmentof trust in
clinical applications163. Due to limited sample sizes and the need for high-
quality data, AI models may underperform in certain groups if the training
data for those populations is insufficient or not representative—an issue
currently present in this field. Of course, this issue is not limited to AD;
similar challenges are also observed in Parkinson’s disease179. It is antici-
pated that with the establishment of high-quality datasets, this issue is
expected to be mitigated. Moreover, accountability in the use of AI in
medicine poses anothermajor challenge. AsAI ethics evolve, accountability
issues are expected to be gradually addressed, although it will still take some
time170.

Additionally, we believe that future research in this field can largely
advance in seven specific directions: multimodal studies, home-based test-
ing, large-sample longitudinal research, development of consumer-grade
digital devices, construction of interdisciplinary collaboration frameworks,
establishment of large open datasets, and development of advanced algo-
rithms and systems. The integration ofmultimodal data is emerging as a key
trend in the early diagnosis and assessment of AD and related dementias
(ADRD). International initiatives such as the Early Detection of Neurode-
generative Diseases (EDoN) are developing digital toolkits based on mul-
timodal data to identify early biomarkers of AD and ADRD180. Data fusion
technologies will enable the combination of diverse modalities, building
more precise predictivemodels, thus facilitating personalized treatment and
early intervention15. Future research must focus on validating the clinical
applicability of these methods and optimizing their use across different
stages of disease progression.

At present, most assessments are still conducted in clinical settings,
making them susceptible to the laboratory effect and training effect, which
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diminish the objectivity of the results. This may be influenced by factors
such as data collection methods and privacy concerns. For example, the
“first-night effect” is commonly observed in sleep studies181, while the
laboratory effect frequently affects gait research182.Home-basedassessments
canmitigate these biases by increasing the frequency of evaluations through
ecological momentary assessments conducted via smartphones. Addition-
ally, embedded passive sensors enable data collection from populations that
are more difficult to access183. In fact, this approach promotes a shift from
active testing to passive monitoring, potentially fostering multimodal
research, such as the integration of sleep, gait, and other metrics into
comprehensive monitoring.

Large-scale longitudinal studies face numerous challenges in utilizing
digital biomarkers for AD detection. These challenges arise not only from
the limitations of devices and technologies but also from issues related to
data integration and privacy protection. However, some mobile device-
based digital assessments have shown significant potential184, particularly in
terms of assessment frequency and data diversity. Future research should
prioritize the exploration of such tools that are scalable and feasible for
widespread use, as they are likely to offer the first viable solutions for clinical
evaluation andpave theway for further biomarker research185.Nevertheless,
this does not suggest neglecting other forms of digital biomarker studies, as
the ultimate goal for all biomarkers is to transcend the limitations of tra-
ditional approaches and advance towards large-scale, longitudinal
assessments.

According to a market report by BIS Research, the global digital bio-
markers market generated $524.6 million in revenue in 2018, and is pro-
jected to exceed $5.64 billion by 2025186, demonstrating immense market
potential. In Alzheimer’s research, commonly used devices such as elec-
tronic gait mats and eye trackers are expensive and primarily confined to
laboratory settings. Moving forward, efforts should focus on developing
affordable, unobtrusive devices that can be integrated into clinical practice15.
However, using commercial devices presents challenges related to data
sharing andprivacy187, andmay lead to region-specific ethical issues, such as
the commercial use of health data by insurance companies. Additionally,
older adults’ acceptance of new devices is a critical factor188. Involving
multidisciplinary teams and patient participation will be key to advancing
this field.

The interdisciplinary nature of digital biomarker research underscores
the importance of establishing stable and active collaboration networks. In
the future, exploring how to build robust cross-disciplinary collaboration
models in various types of digital biomarker research will become a
key issue.

The establishment of large-scale public datasets facilitates resource
sharing and provides research opportunities, particularly in resource-
limited regions. For example, the RADAR-AD sub-study uses smart home
sensor data to monitor activities of daily living, generating high ecological
validity datasets that offer new insights into functional, behavioral, and
perceptual decline in Alzheimer’s disease, supporting risk stratification
analysis189. The latest ADNI initiative, ADNI4, one of the largest multi-
center datasets in AD research, aims to recruit at least 20,000 participants
through an online portal for long-term assessments, including the Novoic
Storyteller test190. Similarly, the DPUK clinical studies and Great Minds
registry plan to enroll up to 3million participants for smartphone and web-
based cognitive assessments, with data feeding back into the DPUK data
sharing platform191,192. It is also worth noting that the AD-CLIP dataset,
which focuses on behavioral data, not only provides valuable data but also
employs depth camera technology to ensure privacy protection193. These
initiativesnot onlybridge resource gapsbut also support large-scale research
ondigital biomarkers.Moreover, the open-access nature of such effortsmay
provide greater opportunities for external validation of AI models.

In AI models for digital biomarkers, the development of novel algo-
rithmic architectures and systems not only enhances personalized predic-
tions but also facilitates the discovery of new digital biomarkers. For
instance, the iSleep system, which monitors sleep via smartphones194, the
EmoMarker system, designed to capture emotional binary digital

biomarkers in dementia patients195, andDeepHeart, a deep learningmethod
for accurate heart rate estimation from photoplethysmography signals196,
are key innovations. These advancements enable the quantification and
analysis of physiological and behavioral features that were traditionally
difficult to capture, significantly expanding the scope of digital biomarkers.
This is precisely what current AD biomarker research lacks. In the future,
the development of new algorithmic frameworks and systems for various
types of biomarkers will provide forward-looking insights for personalized
diagnosis and intervention in AD patients.

Moreover, research on data augmentation and synthesis using Large
Language Models (LLMs) has emerged as a promising approach for
generating large open datasets for AD patients. For example, SHADE-
AD197 leverages LLMs to learn activity features of AD patients from real-
world data, enabling the creation of synthesized datasets to address
challenges such as data imbalance. Additionally, researchers are increas-
ingly focusing on multi-modal sensor systems to detect dyadic digital
biomarkers related to the living conditions of AD patients, such as family
expressed emotion—a quantifiable measure of the family environment in
terms of hostility, criticism, and distancing195. Furthermore, LLMs’
advanced understanding and reasoning capabilities are being utilized to
develop interactive in-home healthcare systems. CaringFM utilizes
privacy-protecting sensors to deploy LLM at home provide general health
suggestions and personalizedmedical information to elderly with AD and
other chronic diseases198. Advanced methods from other diseases are also
worth considering, such as the integration of radiofrequency (RF) tech-
nology and AI for new monitoring approaches in Parkinson’s disease
(PD). This method has proven effective in gait analysis, enabling the
extraction and analysis of gait velocity in PDpatients. This helps assess the
severity of the disease, its progression, and the patient’s response to
medication199. In the field of sleep monitoring, this approach allows for
non-contact extraction of the patient’s respiratory signals and accurately
evaluates sleep stages and respiratory events200. Furthermore, By analyzing
nocturnal breathing patterns,it has successfully and preliminarily differ-
entiated AD from PDand effectively assessed disease progression201.
Despite these promising advancements, future research must focus on
validating the clinical applicability of these methods and optimizing their
use across different stages of disease progression.

This study represents the first comprehensive analysis of research on
digital biomarkers inADdiagnosis using bibliometricmethods,with a focus
on researchpatterns and the development of interdisciplinary collaboration.
Although significant progress has been made in this field, many challenges
remain. Based on these findings, we provide practical recommendations for
future research. Additionally, with the advancements in AI algorithms, our
understanding of AD diagnosis and monitoring is being redefined. This
review aims to fill existing gaps in the literature by systematically sum-
marizing and analyzing the latest developments in Alzheimer’s digital
biomarkers, particularly the application of AI models. However, while we
discuss the potential of these technologies, our study intentionally focuses
on digital biomarker technologies and methodologies, which may not fully
encompass all emerging technologies. For example, while technologies such
as radio frequency and large languagemodels show promise, they are still in
the early stages of application and require further empirical studies to
validate their efficacy and reliability. In fact, our study also has limitations.
First, we analyzed only English-language publications, potentially over-
looking high-quality research in other languages. Second, the lack of stan-
dardized classification criteria for digital biomarkers introduces a degree of
subjectivity in the categorization process, despite consultation with inter-
disciplinary experts. Third, this studyprimarily focuses on the applicationof
“digital biomarkers” inAD.However, thismore specificdefinitionmay limit
the discussion of broader, potentially relevant “measures.” Lastly, while we
focusedonAImodel characteristics,wedidnot conduct adeep evaluationof
methodological quality. Publication bias may have resulted in an over-
estimation of the benefits of AI models in risk prediction. Additionally, the
heterogeneity of the included studies complicates direct comparison of
results.
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Methods
This study is divided into three main parts: The first part uses bibliometrics
and content analysis to examine the current state of the field from various
dimensions, including research output, countries, and institutions. The
second part employs bibliometric methods to explore the characteristics of
researchers in the field, thereby identifying the status and trends of inter-
disciplinary collaboration. These analyses follow the bibliometric frame-
work proposed by Cobo et al.202. The third part builds upon the hotspot
topics identified in the first section, conducting an in-depth scoping review
with a focus on paradigms, tasks, features, algorithms, and performance of
machine learning models for different digital biomarkers.The overall study
workflow is illustrated in Fig. 23.

Analysis tool
Integrating information fromvarious databases, such as data fromcountries
and institutions, and relying on manual analysis often faces challenges due
to the large volume of data and the potential for human error in statistical
calculations. Moreover, analyses using a single tool often struggle with the
limitation of lacking high-resolution data analysis203. To address these
challenges, we adopted a multi-tool bibliometric analysis strategy. Specifi-
cally, the tools used in our analysis include Citespace (Version 6.2.R6
Advance; Drexel University)204, VOSviewer205 (Version 1.6.19; Leiden
University), Bibliometrix206, bibliometric207, Gephi208 (Version 0.10.1;
Gephi.org), Joinpoint (Version 5.0.2; National Cancer Institute of the
United States)209, and Cortext (Gustave Eiffel University)210. For layout and
enhanced visualization, we utilized ScimagoGraphica (Version 1.0.16; Sci-
mago lab)211 andPajek64Portable (Version 5.18;University of Ljubljana)212.
Data processing, analysis, and visualization were carried out using Ori-
gin2021 Pro (Origin Lab) alongside R packages, including ggplot2,
reshape2, tidyverse, plyr, scales, and viridis. Detailed analysis strategies for
each section are provided in Table 5.

Data sources and search strategy
Considering the comprehensiveness of the search and the interdisciplinary
nature of digital biomarkers, we searched five major databases: Web of
ScienceCoreCollection, PubMed, IEEEXploreDigital Library,Embase, and
CINAHL. Before conducting the formal search, all research teammembers

underwent professional training based on the textbook Medical Literature
Information Retrieval213. With the assistance of librarians, neurologists, and
medical informaticians, we developed a search strategy derived from the
definition in the BEST glossary214. Core keywords included “Alzheimer’s
disease,” “digital biomarkers,” and “diagnosis,” combinedwith terms related
to disease behavior or physiological characteristics and associated mea-
surement devices. Boolean operators were used to combine these terms. To
minimize inclusion bias due to daily updates of resources in various data-
bases, we conducted a unified search across all platforms on May 1, 2024,
and completed the data export process. The scoping review of AI models
involved a secondary round of retrieval and selection of all relevant studies
published beforeDecember 31, 2024.Detailed search strategies and retrieval
counts are provided in Supplementary Table 31.

Inclusion and exclusion criteria
Inclusion Criteria:
• Studies must involve digital biomarkers obtained using digital devices

or technologies; behavioral or physiological data obtained through
other means are excluded as digital biomarkers.

• The literature must be an article published in a peer-reviewed journal.
• Studies must be written in English.
• The research objective must involve the application of digital bio-

markers in the screening, diagnosis, or other relevant aspects of AD.

Exclusion Criteria:
• Studies where the full text is unavailable or where the content is

incomplete.
• Duplicate publications.
• Non-journal literature (e.g., conference papers, books, abstracts).
• Non-research literature (e.g., systematic reviews, scoping reviews,

meta-analyses, research protocols).
• Studies that use digital devices or digital biomarkers to assess treatment

effects, care, or rehabilitation purposes.

Screening strategy
Before the formal inclusion and exclusion of literature, two evaluators (WQ
andYS)were assigneda randomly selected sample of 50 studies to conduct a

Fig. 23 | Flowchart and analytical content of the bibliometrics and content analysismethodused in this study.The image illustrates the threemain issues addressed by the
study, the analytical workflow, and the tools and methods employed.
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preliminary screening test to ensure the reliability of the screening process.
The final Cohen’s kappa value was 0.88, indicating high consistency, and
thus nomodifications were made to the inclusion criteria or the evaluators.
During the formal independent screening process, any disagreements were
resolved by SC, who intervened and participated in the decision-making.
Thefinal screening andverificationprocesswas completedon June15, 2024.
After identifying specific research hotspots, a further review was conducted
to select studies related to AI models that met the required criteria.

Extraction and classification of digital biomarkers
Based on the FDA’s definition of digital biomarkers, and to ensure com-
prehensive classification, we referenced the digital biomarker research by
Lampros C20 and Antoine18, as well as the digital biomarker classification
scheme for Parkinson’s disease, a similarly neurodegenerative disease215.
Additionally, we consulted with experts from the Digital Medicine Sub-
committee of the Chinese Medical Association. To highlight the unique
characteristics of different biomarkers and minimize redundancy in clas-
sification, we classified digital biomarkers into 11 categories: limb move-
ment biomarkers, eye movement biomarkers, speech biomarkers, natural
driving biomarkers, home activity biomarkers, digital measurement bio-
markers based on mobile or dedicated ICT devices, non-dedicated ICT
biomarkers (i.e., biomarkers derived from non-specialized information and
communication technology devices), physiological signal biomarkers, sleep
pattern biomarkers, other biomarkers, and multi-type biomarkers (i.e.,
multimodal biomarkers). The specific classification scheme is detailed in
Supplementary Table 32.

Data extraction
We designed two comprehensive data extraction tables. One table was used
to extract extensive information from 431 studies to provide an overview of
the field. This table includes details such as publication year, author infor-
mation, institutional affiliations, country, funding sources, keywords, sub-
ject areas, and citation counts, which illustrate the development trends and
evolution of digital biomarkers in AD. Additionally, we applied Louis’
method to extract the disciplinary backgrounds of each researcher, enabling
us to identify the interdisciplinary nature of the field216.The emerging trends
of various digital biomarkers, aswell as the devices and task paradigms used,
were categorized and summarized after thoroughly reviewing the full text of
each article. The second table was used to extract key information related to

AI models. This table summarized essential details such as the types of
research, digital biomarkers, collection devices, tasks, algorithm types,
performance distributions, model validation and calibration, and data
processing methods. The extraction of collection paradigms was detailed,
specifying the names of devices and types of tasks. Model performance was
presented through boxplots, and the mean values were calculated. Other
significant data were displayed either visually or in tabular form.The
extraction process was conducted by two evaluators (WQ and YS). Dis-
crepancies were resolved through discussion, and if consensus could not be
reached, a third author (GX) was consulted. The two data extraction tables
are provided in Supplementary Table 33 and Supplementary Table 34,
respectively.

Data cleaning
In the multidimensional landscape analysis, we standardized the repre-
sentations of the same domain across different databases. For authors with
similar names, we conducted a further review to determine if they were the
same individual. This verificationprocess included checking the consistency
of their ORCID (Open Researcher and Contributor ID), historical pub-
lications, affiliation with the same institution, and information on profes-
sional platforms such as ResearchGate. For authors affiliated with multiple
institutions, we adopted Seojin Nam’s institution cleaning model217, using
the first-listed institution as the primary affiliation. Additionally, we stan-
dardized the abbreviations and full names of all institutions. In our analysis
of international collaborations, we accepted cases where authors were
affiliated with multiple international institutions, as this could indicate
potential visiting scholars or other forms of international cooperation. For
funding analysis, we reviewed and consolidated various representations of
sponsornames (e.g., full names andabbreviations) to ensure consistency.To
ensure the uniformity and accuracy of keywords in co-occurrence analysis,
we used the bibliometrix package in R to merge synonyms. A full list of
merged keywords is provided in Supplementary Table 35.

Data synthesis
After data extraction, we employed a narrative synthesis approach to
summarize the multidimensional insights from the data extraction tables.
For multidimensional landscape analysis, the publication volume analysis
used the least squares polynomial method to fit the trend line,with R2

indicating the fit quality218. The Compound Annual Growth Rate (CAGR)

Table 5 | Combined Analysis Strategy of Various Tools

Content Citespace VOSviewer Bibliometrix Gephi Bibliometric Cortext

Publications
Number

√

Author √ √

Organization √

Country √ √

Keyword √ √ √

Keyword Cluster √

Grant √

Interdisciplinary collaboration √

Field-specific publication √

Content ScimagoGraphica Pajek Python R Joinpoint Origin

Map visualization √

Social network optimization √

Variable coding √

Keyword data cleaning √

Identification of potential change points √

Polynomial trendline fitting √

Identify potential similar fields √
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was calculatedusing:Growth rate = ([number of publications in the last year
or number of publications in the first year]1/(last year − first year)−
1) × 100219. Joinpoint software (version 4.8.0.1) was used to evaluate time
trends, identify significant inflection points, and calculate slope changes,
with p < 0.05 considered statistically significant220. Author productivity was
analyzed using Price’s Law, identifying core authors24. National analysis
included global publication and regional density maps from Scimago-
Graphica. International collaboration intensity was assessed via co-
occurrence matrices and visualized with chord diagrams. Disciplinary
publication patterns were analyzed using time-sliced WoSCC-indexed lit-
erature and VOSviewer. High-frequency keywords were clustered in
VOSviewer, with theminimum frequency determined by Price’s Law24. The
interdisciplinary collaboration was visualized in the matrix by the level of
participation from each discipline and the number of contributors to digital
biomarker research.

Given the variety of biomarker types, collection paradigms, AI
approaches, and evaluation techniques, our analysis of AI models
covered several aspects. We began by examining study characteristics,
with a focus on demographic information and study design. We then
summarized the types and sources of data used across the studies. On
the technical aspects, we evaluated theAImodelingmethods, including
data processing and model validation. Our synthesis also explored the
performance metrics reported, highlighting the best-performing
models. We also addressed the causes of data loss during the data
collection process and explored multimodal AI modeling approaches.
Regarding research transparency and reproducibility, we evaluated the
availability of code and adherence to established reporting standards in
each study.

Data availability
All data generated or analyzed during this study are included in this pub-
lished article and its supplementary information files, and the original data
and detailed analysis methods can be shared upon reasonable request to the
corresponding author.

Code availability
The code used in the analysis of this study can be made available from the
corresponding author upon reasonable request.
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