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ABSTRACT
Alzheimer’s Disease (AD) and related dementia are a grow-
ing global health challenge due to the aging population. In
this paper, we present ADMarker, the first end-to-end sys-
tem that integrates multi-modal sensors and new federated
learning algorithms for detecting multidimensional AD dig-
ital biomarkers in natural living environments. ADMarker
features a novel three-stage multi-modal federated learning
architecture that can accurately detect digital biomarkers
in a privacy-preserving manner. Our approach collectively
addresses several major real-world challenges, such as lim-
ited data labels, data heterogeneity, and limited computing
resources. We built a compact multi-modality hardware sys-
tem and deployed it in a four-week clinical trial involving 91
elderly participants. The results indicate that ADMarker can
accurately detect a comprehensive set of digital biomarkers
with up to 93.8% accuracy and identify early AD with an
average of 88.9% accuracy. ADMarker offers a new platform
that can allow AD clinicians to characterize and track the
complex correlation between multidimensional interpretable
digital biomarkers, demographic factors of patients, and AD
diagnosis in a longitudinal manner.

CCS CONCEPTS
• Human-centered computing→ Mobile computing; •
Computing methodologies→ Learning paradigms.
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1 INTRODUCTION
Alzheimer’s Disease (AD) is a progressive neurodegenerative
disease that can cause significantly declining cognitive and
functional abilities. AD and related dementia is a growing
health challenge worldwide because of population aging [32,
33]. In 2010, about 35.6 million people lived with dementia,
which is expected to double every 20 years [19].

A major barrier to the treatment of AD is that many pa-
tients are either not diagnosed or diagnosed at the late stages
of the disease. Studies suggest that 75% of worldwide persons
with dementia are undiagnosed [1]. This is largely due to the
fact that, the standard clinical procedure for AD diagnosis,
based on Magnetic Resonance Imaging (MRI), Positron Emis-
sion Tomography (PET) brain scan, or blood biomarkers like
amyloid 𝛽1−42, is only available in clinical settings. Although
various screening tests can identify cognitive impairments,
they are usually intrusive and cannot be conducted routinely
or in a real-time manner. Therefore, early identification of
people at risk of developing AD and timely intervention to
slow the onset and progression of AD are crucial.
A recent major advance in early AD diagnosis and inter-

vention is to leverage AI and sensor devices to capture physi-
ological, behavioral, and lifestyle symptoms of AD (e.g., activ-
ities of daily living and social interactions) in natural home
environments, referred to as digital biomarkers [2, 21, 28].
The difficulty in performing activities of daily living (ADLs)
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is a hallmark feature of AD, because ADLs, such as watch-
ing TV, cleaning living areas, and taking medicine, involve
tasks that require independence, organization, judgment, and
sequencing abilities [57]. Moreover, social behaviors, such
as family meals and phone calls, are shown to be strongly
correlated with the risk of early AD [11, 18].

There are several major challenges that have not been ad-
dressed in previous work on AD digital biomarkers. First, ex-
istingwork is focused on a particular type of digital biomarker,
such as motor function [30], speech features [44], or driving
habits [12], which lacks generalizability to subjects with var-
ious demographic and medical characteristics. Second, most
of the studies are based on the black-box approach, where
the sensor data/feature is directly used to identify AD, which
not only incurs extremely high computing overhead but also
results in digital biomarkers that are difficult to interpret by
medical professionals. Third, existing solutions are based on
a centralized learning approach that needs to upload raw
sensor data, imposing significant privacy concerns.
In this paper, we present ADMarker, the first end-to-end

system that integrates multi-modal sensors and new feder-
ated learning (FL) algorithms for detecting multidimensional,
more than 20 AD digital biomarkers in a privacy-preserving
manner. The system features a novel three-stage FL architec-
ture, where the nodes deployed in subjects’ homes leverage
the pre-trained model to reduce the compute overhead of
online training, and improve the model performance on their
own data through multi-modal unsupervised and weakly su-
pervised FL algorithms. This approach collectively addresses
several real-world challenges, including limited labeled data,
data heterogeneity, and limited computing resources. We
implemented ADMarker on a compact multi-modality sen-
sor hardware system with three privacy-preserving sensors
(i.e., a depth camera, a mmWave radar, and a microphone) to
detect a comprehensive set of digital biomarkers in home en-
vironments. The design of ADMarker also addresses several
practical challenges to ensure the durability and efficiency
of the hardware and software system, including long-term
multi-modal data recording, improving training and infer-
ence efficiency, and private communication networks.

We have deployed ADMarker in a four-week clinical trial
that involves a total of 91 elderly subjects, including 31 with
AD and 30 with mild cognitive impairment (MCI). After ex-
cluding 22 subjects with very limited valid data, we evaluate
the performance of ADMarker on the data of 69 remaining
subjects. The results show that, ADMarker can detect more
than 20 daily activities in natural home environmentswith up
to 93.8% detection accuracy, using only a very small amount
of labeled data. Leveraging the detected digital biomark-
ers, we can achieve 88.9% accuracy in early AD diagnosis.
ADMarker offers a new clinical tool that allows medical re-
searchers and professionals to monitor the progression of

AD manifestations and study the complex correlation be-
tween multidimensional interpretable digital biomarkers,
demographic factors of patients, and AD diagnosis in a lon-
gitudinal manner.

In summary, our key contributions include:

• We identify a comprehensive set of digital biomarkers that
are strongly associated with different AD stages yet can
be detected during daily life, and develop a compact multi-
modal hardware system that can be rapidly deployed in
home environments to detect these biomarkers.

• We propose a novel three-stage multi-modal federated
learning approach that incorporates novel unsupervised
and weakly supervised multi-modal FL designs to col-
lectively address several major real-world challenges in
biomarker detection, including limited data labels, data
heterogeneity, and limited computing resources.

• We deployed our systems in a four-week clinical trial in-
volving 91 elderly participants. The results show that AD-
Marker can accurately detect a comprehensive set of digital
biomarkers and identify early AD with high accuracy.

2 RELATEDWORK
Mobile Health Systems. Numerous mobile health systems
have been proposed in recent years [15, 23, 34, 54]. Recently,
several mobile systems are developed for the assessment or
rehabilitation of neurodegenerative diseases. For example,
NeuralGait [29] captures the gait segments relationship for
brain health assessment. PDlens [64] uses smartphone data
for drug-effectiveness detection of Parkinson’s disease. How-
ever, these systems can only monitor very limited symptoms
of the disease, e.g., the gait or sound of subjects. ADMarker is
the first system that can detect multi-dimensional AD digital
biomarkers in a real-time and privacy-preserving manner.

Federated Learning for Human Activity Recognition.
Most work in Human Activity Recognition (HAR) is based
on centralized learning that needs to train the algorithms
at a central server [26, 56, 62], which imposes significant
privacy concerns due to the need to share raw user data.
Federated learning (FL) has been recently applied to HAR to
improve the model accuracy without sharing the raw data
[47, 48, 59]. However, most of the existing FL approaches are
focused on training unimodal models with a single type of
sensor data modality, such as image [48] or inertial sensory
data [59]. Although several multi-modal FL schemes [46, 65]
allow model training over distributed multi-modal data on
the nodes, they are focused on classifying a small number of
activities in controlled environments and require labeled data
from users. ADMarker is the first multi-modal FL system
that incorporates novel unsupervised and weakly supervised
multi-modal FL designs to detect a comprehensive set of
human activities in natural living environments.
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Approach Accuracy # of biomarkers Sensors # of subjects Duration
Tatc [30] Black-box, Centralized 42.3% for MCI 1 (sensor data) Actigraphy 729 (185 AD, 103 MCI, 441 NC) 7 days

ADReSS [35] Black-box, Centralized 60.8% for AD 6 acoustic features Audio 156 (78 AD, 78 non-AD) 10mins (in lab)
Bayat et al. [12] Black-box, Centralized 82% fro AD 14 GPS driving indicators In-vehicle GPS 139 (64 AD, 75 non-AD) One year
Alberdi et al. [9] Interpretable, Centralized No diagnosis results Features of 5 events PIR motion sensor 29 (6 AD, 10 MCI, 12 NC) Two years
ADMarker (Ours) Interpretable, Distributed 88.9% for MCI Features of 22 activities Audio, Depth, Radar 91 (31 AD, 30 MCI, 30 NC) Four weeks

Table 1: Comparison of different AD digital biomarker studies. ADMarker is the first solution that detects a
comprehensive set of multidimensional digital biomarkers for AD diagnosis in a privacy-preserving manner.

Digital Biomarkers for Alzheimer’s Disease. Recently,
understandingADusingmobile sensor-based digital biomark-
ers has attracted tremendous attention [12, 16, 30, 35]. Ta-
ble 1 compares several representative AD digital biomarker
studies. In summary, these studies have several key major
issues. First, existing works only focus on a particular type
of digital biomarkers [30, 35] or detect a very small num-
ber of simple activities like sitting and sleeping [9], which
are only applicable to partial population demographics or
environments. Second, most of the studies are based on the
black-box approach that directly infers the diagnosis from
raw sensor data/features. Such an approach incurs extremely
high computing overhead, as the amount of collected data
over time can be huge (e.g., about 90T in our four-week clin-
ical deployment). In addition, even if the diagnosis with raw
sensor data is accurate, the results are difficult to interpret
and adopt in current practices of AD diagnosis and treatment
that are largely based on observable cognitive and behav-
ioral symptoms [2, 28]. Third, most existing solutions adopt a
centralized learning approach. ADMarker is the first system
that can detect behavior biomarkers in a distributed learning
manner to preserve users’ data privacy.

3 SYSTEM OVERVIEW
3.1 Motivation
Interpretable two-stepADmonitoring. Instead of predict-
ing AD with the raw multi-modal sensor data (i.e., black-box
approaches in Table 1), ADMarker disentangles the disease
monitoring into two steps, i.e., digital biomarkers detection
and early disease analysis with the detected biomarkers. As
a result, the behavior biomarkers detected by ADMarker are
more interpretable for AD diagnosis and can be adopted to de-
sign personalized intervention plans. For example, we select
a large set of biomarkers that are not only strongly associated
with different stages of AD (see Table 2), but also consistent
with the current practice of AD intervention. Moreover, we
could identify critical digital biomarkers through correlation
analysis between the biomarkers and diagnosis results.

Detecting multi-dimensional biomarkers. Compared
with existing approaches focused on a particular type of
digital biomarker [12, 30, 35], ADMarker aims to detect a
comprehensive set of multi-dimensional AD symptoms, such
as various activities of daily living and social interactions.

This allows to investigate how the physical and social inter-
actional etiopathogenesis shape AD’s manifestation. Further-
more, the integration of multi-dimensional digital biomark-
ers enables the precise detection of early AD, encompassing
its diverse manifestations, which would be challenging when
relying solely on a single type of biomarker [32, 33].

Federated learning for privacy-preserving biomarker
detection.To continuously and accurately detect the biomark-
ers, ADMarker needs to accumulate data for a certain period
and use it to trainMLmodels for daily activity recognition. In
order to preserve users’ data privacy, ADMarker avoids up-
loading raw sensor data through federated learning [27, 47]
and communicates with the server via secured networks.

3.2 Challenges
The design of ADMarker (including the hardware, software,
algorithm, and clinical protocol) requires extensive exper-
tise and efforts in both medical and engineering domains.
Through our clinical deployment, we identify many real-
world challenges that haven’t been adequately addressed
and collectively tackle them via both system and algorithm
designs. Specifically, ADMarker aims to address three major
challenges.

The first challenge is to utilize a large set of digital biomark-
ers for early AD diagnosis and intervention. It is essential to
select a comprehensive set of activities that are highly associ-
ated with different AD stages yet can be detected accurately
during daily life. This requires extensive domain expertise
in both medical and engineering areas.

The second challenge is to develop a hardware system that
can be rapidly deployed in real-world home environments for
longitudinal daily activity monitoring. For instance, in order
to capture multi-dimensional digital biomarkers in a privacy-
preserving manner, the hardware system should incorporate
carefully selected sensors of different modalities.
The third challenge is to design an effective multi-modal

federated learning system that can accurately detect digital
biomarkers under real-world data and system dynamics. First,
there usually exists no labels or only a very limited amount
of labeled data because most sensor data is not intuitive for
humans to label [53]. Second, due to the significant diversity
in behavior patterns and home environments, the data dis-
tribution of different subjects is usually non-i.i.d. and highly
imbalanced. Finally, there may be significant training latency
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Figure 1: Overview of ADMarker. ADMarker consists of three major components, i.e., a multi-modal sensor system,
federated learning for biomarker detection, and AD analysis based on detected digital biomarkers.

in real-world FL systems due to the limited computing re-
sources and dynamic bandwidth of nodes.

3.3 System Architecture
Our key idea is to leverage multi-modal sensor devices and
federated learning algorithms to detect multi-dimensional
AD digital biomarkers in natural home environments. Fig-
ure 1 shows the overview of ADMarker.

We developed a compact multi-modality hardware system
that can function for up to months in home environments
to detect digital biomarkers of AD. It incorporates three
privacy-preserving sensors (a depth camera, an mmWave
radar, and a microphone), an NVIDIA single-board edge com-
puter, and a 4G cellular interface that can communicate with
the server. We address several practical challenges to make
the hardware system durable, power-efficient, and privacy-
preserving. On top of the hardware system, we design a new
multi-modal federated learning (FL) system for biomarker
detection while preserving users’ data privacy. The system
features a novel three-stage architecture. At the first stage,
we train a multi-modal model on the server using the labeled
data from public datasets or the previous participants. Then,
during the deployment, the nodes in the subjects’ homes
will load the centrally pre-trained model, and improve the
model performance on their own data through a two-stage
FL process, i.e., multi-modal unsupervised and weakly super-
vised FL, respectively. In weakly supervised FL, the nodes
will only leverage weak labels generated from sparse ac-
tivity logs of the participants, without resorting to labor-
intensive manual annotation of raw sensor data, for local
model training. Our approach collectively addresses several
major real-world challenges, including limited labeled data,
data heterogeneity, and limited computing resources. Finally,
the digital biomarkers are input into a neural network for
AD diagnosis of different patients.

The design of ADMarker is extensively evaluated in a
clinical deployment (see Section 7). A total of 91 elderly

Class
Index

Activities Captured
Sensors Type Decline at

which stage

1 Out of Home Depth, Radar, Mic Mild, Moderate
2 Other activities Depth, Radar, Mic
3 Dressing Depth, Radar BADL Moderate, Severe
4 Take/Put something Depth, Radar BADL Severe
5 Cleaning living area Depth, Radar, Mic IADL Mild
6 Grooming Depth, Radar IADL Moderate, Severe
7 Wiping hands Depth, Radar BADL Severe
8 Drinking Depth, Radar BADL Moderate, Severe
9 Eating Depth, Radar, Mic BADL Moderate, Severe
10 Smoking Depth, Radar IADL Mild
11 Sneezing/Coughing Depth, Radar, Mic BADL Mild
12 Writing Depth, Radar IADL Mild
13 Watching TV Depth, Radar, Mic BADL Mild
14 Phone call/Using phone Depth, Radar, Mic SI Mild
15 Exercising Depth, Radar IADL Moderate, Severe
16 Talking with others Depth, Radar, Mic SI Severe
17 Stretching Depth, Radar BADL Mild, Moderate
18 Walking Depth, Radar BADL Moderate, Severe
19 Sitting Depth, Radar BADL Moderate, Severe
20 Standing Depth, Radar BADL Severe
21 Lying Depth, Radar BADL Moderate, Severe
22 Moving in/out of chair Depth, Radar IADL Severe

Table 2: Selected AD digital biomarkers. BADL: Basic
Activities of Daily Living; IADL: Instrumental Activi-
ties of Daily Living; SI: Social Interaction.

subjects (43 females and 48 males, 61-93 years old) were
recruited for the study, including 31 with AD, 30 with mild
cognitive impairment, and 30 cognitively normal subjects.

3.4 Biomarker Selection
We select a total of 22 activities of interest that are shown
to be highly related to AD from medical literature [10, 13,
36, 37]. ADMarker will detect these activities and use the
duration and frequency of the activities as potential digital
biomarkers for diagnostic analysis (see Section 8.4).
Table 2 shows the activities in the biomarker set, which

can be categorized into three types: basic activities of daily
living (BADLs), instrumental activities of daily living (IADLs),
and social interactions (SI). BADLs include basic self-care
tasks, such as eating, drinking, and walking, while IADLs
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encompass complex tasks that allow for independent living,
like cleaning the living area and grooming [10, 50]. AD pa-
tients who suffer from decreased ability in ADLs and social
interactions are more likely to exhibit amyloid plaques and
neurofibrillary tangles in several brain regions [36, 37].
Moreover, the last column in Table 2 shows the stages of

the disease where these activities become difficult for the
patients. At the mild stage of AD, activities like watching TV
[22] and using phone [63] become challenging due to early
signs of cognitive decline. When the disease progresses to
moderate and severe stages, the patients will suffer compre-
hensive functional deterioration, and are difficult to perform
basic activities like standing [42], exercising[41], and talking
with others [40]. Therefore, the digital biomarkers selected
above are not only interpretable with respect to AD man-
ifestations, but also can be readily applied in intervention
plans. For example, by monitoring the subjects’ daily activi-
ties during the progression of AD, the duration and intensity
of exercise can be prescribed for personalized intervention,
which leads to iterative and more effective treatment.

4 FEDERATED LEARNING FOR
BIOMARKER DETECTION

4.1 A Motivation Study
4.1.1 Understanding the real-world challenges. We first an-
alyze the sensor data and system log recorded by our AD-
Marker testbed (see Section 6) in a four-week clinical deploy-
ment to understand the real-world challenges.
Data challenges. Figure 2 shows the examples of data

distributions of participants over the four weeks of the clin-
ical deployment (see Section 7). First, the amount of data
from different activities is highly imbalanced. For example,
in the daily living activities of Subject 3, the ratio of samples
from class 1 (Out of Home, 81.78%) is very large, while that
from class 15 (Exercising, 1.54%) is small. The imbalanced
activity distribution will lead to a model bias on head classes,
and a significant classification accuracy drop on minority
tail classes [31, 52]. Second, the distributions of different
subjects’ data are non-i.i.d. For example, the number of oc-
curred activities and their ratios are very different between
Subject 1 (cognitively normal) and Subject 3 (AD). The non-
i.i.d data distribution across nodes will reduce the accuracy
performance during FL [47, 48]. For example, the accuracy of
federated learning reduces by up to 55% for models trained
for highly skewed non-i.i.d data [66]. Finally, there usually
exists no labels or only a very small amount of labeled data
in real-world settings because the sensor data (depth images,
radar point cloud, and MFCC audio features in ADMarker)
is not intuitive for humans to label (as shown in Figure 7c).
System dynamics.We then evaluate the long-term sys-

tem dynamics using the system log recorded during the
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Figure 2: Examples of data distributions of participants
in a real-world deployment. The data distribution is
highly imbalanced among different classes and non-
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Figure 3: Times of sensor down and bandwidth of all
nodes over four weeks of the real-world deployment.

real-world deployment. The results are shown in Figure 3.
The upper sub-figure shows the down times of sensors (per
day) of the ADMarker prototype over four weeks, where
each box shows the statistics of all nodes in the day. During
the 4-week deployment, the sensors may stop data recording
occasionally (about 2-6 times per day) due to the system
dynamics, such as power surges or unstable sensor connec-
tions, resulting in heterogeneous sensor modalities across
different nodes in FL. The lower sub-figure shows the upload
bandwidth of nodes (with 4G LTE networks) over different
days, which fluctuates in a significant dynamic range (e.g.,
0-20 Mbps). Such bandwidth dynamics will result in vari-
ous communication delays in transmitting model weights in
federated learning.

4.1.2 Performance of different learning approaches. We then
evaluate the performance of different traditional learning
approaches to motivate the design of our federated learning
architecture. The task is to classify 22 daily living activities
related to Alzheimer’s Disease using audio, depth, and radar
data. The testing data is collected from a subject over four
weeks, with a total of 500 samples. There are 200 labeled
training samples and 4,000 unlabeled training samples from
the target subjects. The pre-trained model is trained using
labeled data (3,728 samples) from another nine subjects.
Table 3 shows the model testing accuracy and on-device

training latency of different training schemes. First, directly
applying the pre-trained model to the new subject results
in a low testing accuracy (i.e., only 18.75%), which shows
that there is a huge domain gap among the data of different
subjects. Second, when there is only limited labeled training
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Approach Pre-trained Supervised Semi-supervised
Training data N/A Label Unlabel+Label

Testing Accuracy 18.75% 59.37% 80.62%
Training Latency (h) 0 4.14 85.83 + 2.07

Table 3: Model performance of three different learn-
ing approaches. “Pre-trained” directly applies a pe-
trainedmodel to the target subject. “Supervised”means
training from scratch with limited labeled data. “Semi-
supervised” trains the model with unlabeled and la-
beled data. The training latency is measured on the
ADMarker prototype.

data (the supervised approach), the model accuracy is still
unsatisfactory, i.e., 59.37%. And the model accuracy can be
improved by unsupervised multi-modal learning that lever-
ages large amounts of unlabeled data from the subject (the
semi-supervised approach). However, when learning from
scratch, unsupervised model training with large amounts of
unlabeled data will incur significant computing overhead on
the edge device, i.e., about 85 hours.

4.2 Design Overview: A Three-Stage
Federated Learning Architecture

Motivated by the case study, we propose a novel three-stage
federated learning architecture that integrates a pre-trained
model on the cloud and leverages both unlabeled and labeled
data on nodes deployed in the subjects’ homes. As shown
in Figure 4, at the first stage, we train a multi-modal model
using the labeled data on the server. Such training data can
leverage the public data sets that have already been made
public. For instance, the data collected from this work will
be made public and utilized for model pre-training in fu-
ture deployments. We can use datasets that contain a subset
of three modalities to pre-train unimodal encoders. Then,
during the deployment, the nodes in the subjects’ homes
will load the centrally pre-trained model, and improve the
model performance on their own data through two-stage
federated learning, i.e., unsupervised multi-modal FL and
weakly supervised multi-modal FL, respectively.

The reasons for the three-stage training design are as
follows. First, the model trained on the cloud needs to be
retrained to adapt to the local data of each subject. Second,
training the multi-modal network from scratch with noisy
real-world data is an extremely challenging task in FL set-
tings. The pre-trained model can reduce the computing over-
head of online FL training. Third, there usually exists a very
small amount of labeled data, as it is difficult to label multi-
modal data in real-world settings. Therefore, the nodes per-
form unsupervised FL to leverage the large amounts of unla-
beled multi-modal data, and weakly supervised FL based on
limited weakly labeled data. The weak labels for supervised
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…
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Data
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for FL
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Figure 4: The three-stage federated learning architec-
ture of ADMarker. Stage 1: Centralized model pre-
training; Stage 2: Unsupervised multi-modal FL; Stage
3: Weakly supervised multi-modal FL.

local training are provided by the participants (see Section
4.4). For example, marking the time of having lunch would
automatically label the multi-modal data during lunch. In
the following, we focus on the framework of unsupervised
and supervised multi-modal federated learning.

4.3 Unsupervised Multi-Modal FL
In this stage, the nodes will download the pre-trained model
from the server, and collaboratively train feature encoder
networks of different data modalities (i.e., depth images, au-
dio, and radar data) using the collected unlabeled sensor data
during deployment. There are two main challenges during
the unsupervised federated learning stage. First, the sensor
modalities produce highly heterogeneous information about
the same events/activities. For example, the audio features
and radar data have significantly different dimensions and
patterns, making it challenging to extract useful information.
Second, the sensor modalities available on different nodes
may vary due to the deployment constraints or runtime
system dynamics. For example, some families may not be
willing to have depth cameras installed in the bedroom, and
the sensors may fail dynamically, e.g., due to power surges.
Therefore, the design of unsupervised multi-modal FL should
adapt to different modality combinations.
To address these challenges, the nodes will run fusion-

based contrastive learning that trains the feature encoders by
exploring the consistent information of heterogeneous data
modalities. The server will aggregate the feature encoders of
nodes with heterogeneous data modalities through modality-
wise federated averaging. Compared with traditional multi-
modal FL approaches, the key advantage of this idea is that
it is oblivious to differences of modalities on nodes.
Contrastive fusion learning on nodes. During local

training, a fusion-based feature augmentation module [45]
will extensively augment the uni-modal features (extracted
by encoders of different modalities) to a group of fused fea-
tures via weighted sum or concatenation. As shown in Fig-
ure 5, each augmented feature represents a different fusion
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Figure 5: Contrastive fusion learning on nodes with un-
labeled multi-modal data. Through contrastive learn-
ing on augmented fused features, the feature encoders
are trained to capture consistent information.

combination of the sensor features and contains some sub-
set of information in the original data sample. Let 𝑠 ∈ S ≡
{1, 2, ..., 𝑃 × 𝑁 } be the index of an arbitrary augmented fea-
ture, and let 𝑝 ∈ 𝑃 (𝑠) be the index of the other augmented
features originating from the same source sample. The con-
trastive fusion loss can be defined as:

L𝑐𝑜𝑛𝑓 =
∑︁
𝑠∈S

−1
|𝑃 (𝑠) |

∑︁
𝑝∈𝑃 (𝑠 )

𝑙𝑜𝑔
𝑒𝑥𝑝 (v𝑠 · v𝑝/𝜏)∑

𝑎∈S\{𝑠 } 𝑒𝑥𝑝 (v𝑠 · v𝑎/𝜏)
. (1)

Here v𝑠 is the feature output of the fusion-based augmen-
tation module, and the symbol · denotes the inner product
of feature vectors. 𝜏 ∈ R+ represents the temperature used
to adjust the impact of different samples [58]. Therefore,
minimizing the contrastive fusion loss will force the fused
features from the same multi-modal data sample (positive
features, v𝑠 and v𝑝 ) together, while pushing fused features
from other data samples (negative features, v𝑠 and v𝑎) apart.
In this way, the feature encoders are trained to learn consis-
tent information across modalities by maximizing the mutual
information of features from different modalities.
Modality-wise federated average. In multi-modal FL

systems, the nodes with different data modalities will have
different model architectures. For example, the nodes with
all data modalities will train models with three multi-modal
feature encoders, while the models of nodes with only depth
and audio data will train models with two feature encoders.
We propose a modality-wise federated average scheme to
address the challenge of modality heterogeneity, where the
server will collect and aggregate the encoder networks of
the same modality with Fedavg [39]. As a result, the nodes
with different data modalities can collaborate to improve the
performance in unsupervised federated learning. We also
apply this model aggregation scheme on the server during
the weakly supervised multi-modal FL stage.

4.4 Weakly Supervised Multi-Modal FL
At the third stage, the nodes will perform weakly super-
vised multi-modal FL based on the model trained at the sec-
ond stage. During the real-world deployment, the nodes can
leverage weak labels provided by the participants or their
caregivers for local model training. For example, marking the

(a) “Activity record form” from subjects.
(b) Mapping weak labels 

to fine-grained labels.
(c) Associating mapped labels 

with collected sensor data.
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Figure 6: Training with weak labels. The “activity
record form” provided by subjects is mapped to fine-
grained labels and associated with collected data.

time of having lunch would automatically label the sensor
data during the period. However, it would be challenging to
associate the sparse and noisy labels with collected sensor
data for supervised model training. Moreover, different sub-
jects usually have highly heterogeneous and imbalanced data
distributions, making it challenging for model aggregation
in FL. For example, some activities such as “sitting” incur
frequently while others like “writing” appear rarely.

Training with weak labels. ADMarker leverages sparse
activity logs for weakly supervised training. Such logs can
be obtained in several different ways. Many patients are rou-
tinely suggested by the doctors to keep a journal of activity
logs through ADL scales [49]. Alternatively, the patients
and/or their caregivers may be asked to keep an activity
log for the purpose of user training during the initial phase
of system deployment. Our results show that ADMarker
achieves good performance even if activity logs are available
for only several days (see Figure 12a). Moreover, only major
daily routines like “sleeping”, “having a meal” (see Fig. 6(a))
are needed, which alleviates the burden of users.

To train the model with weak labels, we first need to map
them to a series of fine-grained activity labels we are inter-
ested in (see Table 2), which requires sophisticated domain
knowledge. For example, the weak label “Having a meal”
corresponds to the fine-grained labels “eating” and “setting”,
while “Household” includes the activities of “standing” and
“walking”. Another challenge is to associate the mapped fine-
grained labels with collected sensor data, because the map-
ping from weak to fine-grained labels does not include the
order of the events. Therefore, during the weakly supervised
training, we split the training data such that the data samples
in the same batch are collected successively in the time order.
Then, to improve the training performance, we shuffle the
training samples in each batch to simulate different orders
of the activities, and calculate the cross entropy loss with
different label permutations for model training.
Local and global balancing on nodes. To address the

challenge of local class imbalance, the nodes will perform
both self and global balancing during model training. First,
the nodes will apply balanced re-sampling to the train sam-
ples during local model training, which avoids the gradient
dominance of the majority classes. Moreover, as FL proceeds,
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Figure 7: The ADMarker prototype. The hardware incorporates three sensor modalities (depth, mmWave radar,
and audio) to detect multi-dimensional behavior biomarkers in home environments.

the server-side global model more or less accumulates some
knowledge on all classes [52]. Therefore, we use the aggre-
gated global model as the teacher model to guide the training
of the local model using knowledge distillation [20].

5 UTILIZING DIGITAL BIOMARKERS FOR
AD ANALYSIS

To evaluate the effectiveness of the detected biomarkers,
we use a DNN for AD diagnosis, where the inputs are the
features of the digital biomarkers and outputs are the pre-
dictions of diagnosis results. Then, the major challenge is
how to quantify the digital biomarkers to generate effective
features as the input of the disease diagnosis model. Accord-
ing to medical literature [17], we calculate the duration and
frequency of the detected activities over the period of deploy-
ment as the features. However, due to the system dynamics
(see Section 4.1.1), the total duration of the recorded sensor
data may vary among different subjects. For example, most
of the subjects will have four-week data, while some subjects
only have one-week or two-week data due to sensor faults.
Therefore, we further normalize the duration and frequency
of detected activities with the period of the collected data.

Moreover, to further select more effective digital biomark-
ers, we use one-way Analysis of Variance (ANOVA) [55] to
measure the correlations between each digital marker and
the diagnosis results. Before applying ANOVA analysis to
the data collected in our clinical deployment, we need to
ensure that our data satisfies the following three conditions:
independence, normality, and equality. First, the selected
features of each individual are independent of others, either
in the same or different subject groups (NC, MCI, and AD).
Second, we apply the Box-Cox data transform [51] to the
selected features, ensuring that the transformed features sat-
isfy the normal distributions. Third, we use the Levene’s test
[14] to access the variances of each feature among the AD,
MCI, and NC groups. The mean p-value (0.659) is larger than
0.05, which shows the equality of selected features.

6 SYSTEM IMPLEMENTATION
6.1 Hardware System
Figure 7 shows the overview of our ADMarker prototype.

6.1.1 Hardware choices. The goal of the hardware design is
to capture lots of digital biomarkers in a privacy-preserving
manner while ensuring the durability and scalability of the
system. First, we choose three sensor modalities: a depth cam-
era, an mmWave radar, and a microphone, which collectively
capture a wide range of biomarkers while preserving users’
privacy. In particular, the Time-of-Flight (ToF) depth camera
can detect context-aware activities like cleaning living ar-
eas and moving in/out of chairs, without revealing sensitive
personal information like faces. The microphones can help
distinguish acoustic-related activities like watching TV and
talking with others, which run real-time algorithms to ex-
tract Mel-frequency cepstral coefficient (MFCC) features [24]
without storing raw acoustic data. The mmWave radar can
capture motion-related activities like walking, standing, and
sleeping. Second, we choose the NVIDIA Xavier NX [3] as
the main compute unit as it incorporates powerful NVIDIA
GPUs (384-core Volta) and CPUs (6-core @1.9GHZ) for on-
device model training. Third, to improve the durability of the
system, we choose the NVMe SSD rather than the conven-
tional portable HDD or SSD as the external data storage unit.
The reason is that they have a relatively lower read/write
speed (about 100MB/s), poor reliability (vulnerable to vibra-
tion and power failure), and a larger size/weight, which is
unsuitable for long-term operation and mass deployment.

6.1.2 Layout design. The design of our hardware system
comprises a number of components (e.g., sensors, accessories,
and cables) in a single box, which increases the difficulty of
box assembly and heat dissipation. We carefully optimize
the cabling and group similar components within the same
shelve, making the box compact and lightweight. The size of
the hardware box is about 20cm x 20cm x 20cm. Moreover,
the sensing coverage of the sensors is limited, e.g., with the
range of 0.35m-4.4m and a field-of-view (FOV) of 69°(H) x
51°(V) for the depth camera. In order to capture the main
area of a living room, we add a tripod at the bottom of the
box to adjust the height and angle of the box.

6.2 Software System
We now present the design of several major functions to
improve the stability and scalability of the software system.
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6.2.1 Long-term multi-modal sensor data recording and pre-
processing. First, ADMarker needs to collect and store the
data of multiple sensors continuously for up to months,
which requires a large storage space and incurs significant
power consumption. In particular, we set the sampling rates
of the depth camera, mmWave radar, and microphone as
15 Hz, 20 Hz, and 44,100 Hz, respectively, which will re-
sult in around 4TB data during a four-week deployment. To
address this challenge, we save the depth data in an 8-bit
format and compress the images into videos with OpenCV
MJPG [4], bringing about a 75% reduction in data volume
without significantly sacrificing the data quality. Second, the
sensors may stop data recording occasionally, e.g., due to
power surges or unstable sensor connections. We use the
systemd service [5] of Linux to restart the sensors in case of
sensor failures. Finally, to train the multi-modal models, the
recorded sensor data is split into 2-second samples, and then
converted into a fixed dimension [16,112,112], [20,2,16,32,16],
and [20,87] for depth (cropped images), radar (voxels), and
audio (Mel-frequency cepstral coefficients), respectively.

6.2.2 Improving training and inference efficiency. During on-
line FL, a major challenge of continuous training and infer-
ence with all collected sensor data is the significant delay.
For example, Table 3 shows that unsupervised FL with 4,000
samples (i.e., data collected in about 2.2 hours) will incur
a training delay of 85 hours (3-4 days). This will not only
increase the data storage requirement on the device, but also
affect the model accuracy due to the delayed updating of
collected data during model training. Therefore, we propose
two approaches to improve training and inference efficiency.
First, we apply the following online data selection strate-

gies to reduce the model training delay while maintaining
the effectiveness of AD symptom monitoring. Basically, the
sensors will only collect data during a 12-hour period (i.e.,
7:00-19:00) that contains fundamental daily activities, such
as having meals, house-holding, etc. Moreover, rather than
saving all recorded data, we evenly sample the data over
time and only choose 1% of the data for model training. The
reason is that most activities of interest, such as sitting, walk-
ing, or standing, last for a relatively long time (e.g., several
minutes). Finally, we use Yolov5 [6] to detect humans in the
depth images and delete the data samples without humans.
To reduce the on-device inference latency, we design a

multi-task scheduling scheme for accelerating the pipeline
in end-to-end multi-modal inference, including multi-sensor
data collection, data pre-processing, and model inference.
As shown in Figure 8, ADMarker will run the three major
tasks in parallel instead of processing them sequentially. For
example, during the inference of previous data frames on
GPU, the tasks of recording and pre-processing the incoming
data frames are scheduled to utilize the spare resources on
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Figure 8: Illustration of our multi-process pipeline in-
ference and conventional sequential inference scheme.

CPUs. Moreover, ADMarker maintains a pool of processes
to handle data pre-possessing tasks of different modalities
in parallel. As a result, ADMarker can detect biomarkers in
real-time, e.g., 9.45 frames per second (of depth data) in the
end-to-end multi-modal inference.

6.2.3 Private and stable communication networks. To enable
federated learning, the system should have highly stable
and secure Internet connectivity to the server. However, the
home WiFi or Ethernet connection of users should not be
used due to privacy and cost concerns. Therefore, the AD-
Marker nodes are incorporated with a cellular interface to
communicate with the server using 4G LTE through a Virtual
Private Network (VPN). Moreover, to reduce the communica-
tion delay, we dynamically select the optimal frequency band
on each node according to the runtime demand of FL, e.g.,
B3 (1800Mhz, 21Mbps) when uploading models to the server
and B40 (2300Mhz, 20Mbps) when downloading models.

7 CLINICAL DEPLOYMENT
A total of 91 elderly subjects (43 females and 48 males), aged
between 61 and 93 years old, have participated in our clini-
cal study1. As shown in Table 4, the participants were from
three groups: 31 with Alzheimer’s Disease, 30 with mild cog-
nitive impairment (MCI), and 30 are cognitively normal. The
ADMarker node will be installed at the height of 1.5m-1.8m
in the living room of the subject’s home for four weeks, as
shown in Figure 7b. We only installed one node in the living
room, not only because this is the area where most activi-
ties happen but also brings less concerns of privacy. During
deployment, we used a tripod to adjust the angle of the hard-
ware box to cover the main living area of the subject. The
installation process typically takes about ten minutes per
home. The subjects and their caregivers were asked to fill in
an “activity record form” by ticking the relevant daily activi-
ties, which served as the weak labels for behavior analysis
(see Section 4.4).

Diagnosis of the subjects. A neuropsychologist in our
study gives diagnosis results of the subjects, which will be

1All the data collection was approved by IRB and the Clinical Research
Ethics Committee of the authors’ institution.
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Group AD MCI NC
No. of subjects 31 (M/F:10/21) 30 (M/F:18/12) 30 (M/F:20/10)

Age (Mean±STD) 79.53±7.11 78.14±5.73 70.66±6.94
Living Mode (A/W-F/W-C) 2/25/4 2/27/1 6/24/0

Education Years (Mean±STD) 6.16±3.82 5.79±3.70 10.59±4.10
MoCA Score (Mean±STD) 11.75±6.38 19.50±6.53 25.07±4.41

Table 4: Demographic characteristics of enrolled el-
derly subjects (N = 91). A: Alone; W-F: With Family;
W-C: With Caregiver. MoCA: Montreal Cognitive As-
sessment [43].

used to enroll subjects with a balanced distribution and eval-
uate the performance of our detected digital biomarkers.
Before the study, each subject underwent a screening test
(i.e., Montreal Cognitive Assessment [43], MoCA) to gen-
erate a cognitive score. A low MoCA score indicates the
risk of cognitive impairment. The subjects then received
physical examinations and face-to-face consultations with a
neuropsychologist if they: (1) have no medical record of AD
diagnosis but receive low MoCA scores; (2) already have a
medical record of AD diagnosis before, but their cognitive
scores are obviously inconsistent with the medical records.
Moreover, patients with AD and MCI who have not received
an MRI test within one year are suggested to do a free MRI
test, while the MRI test is voluntary for cognitively normal
subjects. Then, the neuropsychologist will give the final di-
agnosis results of the enrolled subjects by combining the
results of the face-to-face interview and MRI scan.

8 EVALUATION
8.1 Methodology
Experiment settings. Our evaluation is based on the clin-
ical study of total 91 subjects. The ADMarker systems de-
ployed in these subjects’ homes collected a total of 61,152
hours of multi-modal sensor data, with a total size of over
91TB. Among these, the data of 31 subjects is used for model
pre-training, and 60 deployed nodes run the unsupervised
and weakly supervised federated learning algorithms con-
tinuously for four weeks. We analyze the data from all 91
subjects to show the characteristics of data distributions in
Section 8.3.1. However, we only use data from 69 subjects
(22 AD, 25 MCI, and 22 NC) for evaluation, because the re-
maining 22 subjects either have less than one week of valid
sensor data or limited labeled data that contains humans
(e.g., tens of samples), which would cause highly biased re-
sults. To evaluate the performance of AD diagnosis using the
detected digital biomarkers, we adopt 3-fold cross-validation
using the data of the 69 subjects. We use the software pack-
ages jetson-stats from JetPack 4.6.1 [7] to record the power,
memory/CPU/GPU usage and temperature of the hardware
system, and use speedtest-cli [8] to measure the network
bandwidth and latency.
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puting time of nodes in unsupervised FL.
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Figure 10: Round completion time of FL and mean
bandwidth in a 24-hour operation.

Configurations ofmodels.Themultimodal activity recog-
nition model contains a 5-layer 2D-CNN for audio MFCC
features, an 8-layer 3D-CNN for depth, a 5-layer 3D-CNN for
mmWave radar, plus 3-layer multi-layer perception (MLP)
that is input with concatenated unimodal features for ac-
tivity recognition. The learning rate and batch size are 0.01
and 16 for unsupervised FL, and 0.001 and 16 for supervised
FL. We use the data collected in the first and last weeks for
model training and evaluation, respectively.

Data annotationAs a long-term autonomous monitoring
system, ADMarker is expected to rely on as few manual
annotations as possible. We use the “activity record form”
(see Section 4.4) provided by the subjects to generate the
weak labels for weakly supervised FL. Moreover, the multi-
modal data collected by the system are synchronized using
the system clock and annotated using depth videos by a
professional data labeling company. The manually labeled
data is used as ground truth for evaluating the performance
of our system and helps to understand the performance of
leveraging weak labels.

8.2 System Overhead
In this section, we evaluate the system overhead of ADMaker
during federated learning in the presence of various system
dynamics (see Section 4.1.1). For example, during the 4-week
deployment, the sensors may stop data recording occasion-
ally due to power surges or unstable sensor connections. The
bandwidth of nodes also fluctuates over time.
Figure 9 compares the mean training latency and energy

consumption with or without centralized model pre-training
in online FL. Here, the numbers of training samples in unsu-
pervised and unsupervised FL are 300 and 100, respectively.
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Figure 11: Examples of activity distribution across nine
subjects. The numbers denote the amount of data sam-
ples of the activities over four weeks.
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Figure 12: Data summary of different subject groups.

When themodels of nodes are initialized with the pre-trained
model, the system overhead of both unsupervised and un-
supervised FL is significantly reduced. For example, in un-
supervised FL, the overall training latency and the energy
consumption are reduced by 184.3min and 106KJ, respec-
tively, since the models converge faster than training from
scratch. Moreover, the system overhead of supervised FL
is much smaller than unsupervised FL, because the feature
encoder networks are already trained with large amounts of
unlabeled multi-modal data in unsupervised FL.
Figure 10 plots the variation of round completion time

of FL and mean downlink bandwidth of nodes at different
time of the day. The round completion time denotes the
latency of finishing one global round of unsupervised FL
(i.e., computing time for local training plus communication
time). Generally, the training latency of one FL round at
nighttime is shorter than at daytime (by about 14%), because
of a better 4G LTE network connectivity. Moreover, the la-
tency increases significantly at around 12:00, 17:00, and 19:00,
which is probably caused by the increased network traffic
from smartphone users during/after mealtimes. Therefore,
the nodes in ADMarker could run federated learning at night-
time to reduce the overall training latency. We also note that
the network congestion or node disconnectivity will not
affect the accuracy of biomarker detection.

8.3 Accuracy of Biomarker Detection
8.3.1 Overview of the subjects’ data. We first show the over-
all characteristics of data collected by ADMarker during
the four weeks of real-world deployment. First, Figure 11
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Figure 13: Accuracy of biomarker detection at different
stages, on different subject groups and activity classes.

shows examples of the class distribution across nine sub-
jects for daily living activities and basic body movements,
respectively. We can observe obvious class imbalance in dif-
ferent subjects’ local data. Moreover, the class distributions
of different subjects are highly non-i.i.d. Second, Figure 12a
shows that there is only limited labeled sensor data during
real-world deployment, due to the significant overhead and
cost of data annotation. For example, the average amount of
labeled data is less than 10% of unlabeled data. However, the
amount of data with weak labels (see Section 4.4) is much
larger than manually annotated data, which can be leveraged
to effectively train the models. Finally, Figure 12b presents
the number of occurred activities during the deployment.
In daily living activities, cognitively normal and MCI sub-
jects exhibit more diverse activities than AD subjects, which
shows the decline in cognitive and functional ability during
the progression of AD [33].

8.3.2 Performance of biomarker detection. Figure 13 shows
the accuracy of biomarker detection under different settings.
Performance at different stages of FL. Figure 13(a)

shows the accuracy at different stages of federated learn-
ing. First, directly applying the pre-trained model has a very
low detection accuracy on the participants during the de-
ployment due to the large domain gap, e.g., with a mean
accuracy of 56.37%. Second, although the model accuracy af-
ter unsupervised FL (Stage 2 of ADMarker) is still low since
the classifier layers are not trained, the feature encoders
trained using large amounts of unlabeled data can signifi-
cantly improve the accuracy performance at Stage 3. Finally,
full-fledged ADMarker with a three-stage FL design can im-
prove the model accuracy by combining the unlabeled and
labeled data, e.g., 89.56% and 93.81% mean accuracy with
weak and annotated labels, respectively.

Performance on different subjects. Figure 13(b) shows
the accuracy of biomarker detection on different subject
groups, which varies among the three subject groups. In
particular, the mean accuracy is over 94.51% for AD subjects,
while 87.83% and 91.67% for cognitively normal and MCI
subjects, respectively. The reason is that the cognitively nor-
mal and MCI subjects generally exhibit significantly more
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Figure 14: Understanding theweak labels by comparing
with performance using manually labeled data.

diverse behaviors in daily living (see Figure 12b), increasing
the difficulty of detection.
Dealing with class imbalance. Figure 13(c) compares

the performance of Fedavg with manually labeled data and
ADMarker with weak labels on detecting different classes
of activities. The models are initialized with weights trained
at the second stage of ADMarker. We define the behaviors
with the most and least four data samples as the head classes
(i.e., walking, sitting, standing, and eating) and tail classes
(i.e., cleaning the living area, grooming, wiping hands, and
exercising), respectively. Compared with Fedavg, the overall
accuracy (all classes) is improved by ∼9%. However, Fedavg
exhibits a very bad accuracy in detecting the tail classes, with
∼18.33% on average. Our approach can improve the perfor-
mance on tail classes by ∼48.33% compared with Fedavg.

8.3.3 Understanding the weak labels. We further study the
effectiveness of learning with weak labels in Section 4.4 by
comparing the performance with manually annotated data.
To avoid the impact of different subject groups, the results
are based on the data of cognitively normal subjects.
With different amounts of annotated data. Figure

14a compares the performance of two approaches among
subjects with different amounts of annotated data. Although
the weak labels provided by the subjects are usually noisy
and sparse, the amount of associated weakly labeled data
is usually larger than manually annotated data (see Figure
12a). Therefore, when the subjects have very limited data (#
of labels<100), ADMarker with weak labels even performs
better than with annotated labels, e.g., by 1.41% improvement
in mean accuracy. However, when the subjects have enough
labeled data (# of labels<100), ADMarker with annotated
data will have a better accuracy performance.

On different classes. We then compare the performance
of two approaches on different classes, where the head and
tail classes are defined the same as Section 8.3.2. Compared
with ADMarker with annotated labels, the performance with
weak labels is very close on the head classes, while worse on
the tail classes. The reason is that the weak labels provided
by the subjects are more reliable on “persistent” activities
like walking, sitting, and eating, while noisy on dynamic
activities like cleaning the living area, wiping hands, and
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Figure 15: The confusion matrix of utilizing the digital
biomarkers for different AD diagnosis tasks.
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Figure 16: Impact of leveraging multiple biomarkers.

exercising. Therefore, the performance of ADMarker with
weak labels can be further improved if we combine only a
limited amount of annotated labels on the tail classes.

8.4 Interpretation of Detected Biomarkers
8.4.1 Utilizing the biomarkers for AD diagnosis. Figure 15
shows the effectiveness of utilizing the detected digital biomark-
ers for three diagnostic tasks (i.e., normal/MCI, non-AD/AD,
and normal/MCI/AD). These tasks are clinically important
and are consistent with the current practice of AD diagno-
sis [32, 38]. First, ADMarker achieves about 88.9% accuracy
(33.3%+55.6%) in classifying MCI and cognitively normal
subjects, meaning that ADMarker is able to identify people
at early stage of AD. Second, the accuracy of non-AD/AD
and normal/MCI/AD is 71.4% and 64.3%, respectively, which
shows that identifying MCI from AD subjects is very dif-
ficult for subjects with various demographic and medical
characteristics. Nevertheless, the results are better than the
state-of-the-art studies based on a single digital biomarker.
For example, Tatc [30] identifies MCI with only 42.3% accu-
racy, and ADReSS [35] achieves 60.8% for detecting AD.

8.4.2 Advantages of leveragingmultiple biomarkers. Figure 16a
compares the accuracy of identifying normal/MCI/AD, with
vision-based biomarkers (e.g., walking, standing) using depth
and radar data, audio-based biomarkers (e.g., talking) that
can be captured with microphones, and all biomarkers (e.g.,
eating, phone call) that need a combination of all three sen-
sors. We observe that the diagnosis accuracy with only a
single sensor modality is relatively low, e.g., 57.1% and 35.7%
for vision and audio-based biomarkers, respectively. When
multiple sensor modalities are used, the diagnosis accuracy
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has more than about 30% improvement over single modality-
based biomarkers. Figure 16b shows the diagnosis accuracy
with different numbers of biomarkers, where the biomark-
ers are sequentially added with the order of class index in
Table 2. The results show that more than a few biomarkers
are needed for accurate AD diagnosis, which demonstrates
the significance of integrating multiple sensors for detecting
multidimensional biomarkers in ADMarker.

8.4.3 Correlation analysis with the diagnosis results. Our re-
sults not only identify AD, but also shed light on system
design, e.g., what digital biomarkers should be monitored
more accurately, which reduces the system’s cost and im-
proves the detection accuracy. Specifically, we analyze the
correlation between each biomarker and the three diagnostic
tasks with ANOVA [55]. We name those biomarkers with a
p-value less than 0.05 as cretical digital biomarkers, as they
are strongly associated with the diagnostic tasks. First, the
critical digital biomarkers for different diagnostic tasks are
different. For example, phone calls, walking, and standing
have a strong correlation in differentiating AD/non-AD, yet
are not that useful in identifying normal and MCI. Moreover,
it is extremely hard to differentiate cognitively normal sub-
jects and MCI, as only “sitting” is strongly correlated with
this diagnosis task. This also shows that MCI and cognitively
normal subjects exhibit similar activity behaviors.

In addition, we evaluate the impact of gender and age on di-
agnosis accuracy using the detected digital biomarkers. The
results show that the diagnosis accuracy is similar among
males (80.55%) and females (81.82%). Moreover, the digital
biomarkers are more effective for the subjects aged 60-70
(88.89%) and 80-90 (89.47%) years old, compared with sub-
jects aged 70–80 years old (84.38%). We believe these results
provide insights into further investigation in AD research.

9 DISCUSSION
Here we discuss some future directions of ADMarker.
Improve performance of weakly supervised learn-

ing. Since most subjects/caregivers fail to record activities
in detail, the weak labels extracted from the activity logs
for online supervised FL are usually very sparse and lim-
ited. In the future, we will develop new approaches that
require fewer weak labels during the deployment, e.g., by
associating the weak and manually annotated labels during
model pre-training on the cloud, or leveraging pseudo-labels
automatically generated by applying image classification
algorithms to high-quality depth data [60, 61]. Moreover,
we can exploit the temporal dependence of events [25] to
improve the performance of supervised learning.
Long-term management and interventions with de-

tected biomarkers. The biomarkers detected by our system
could enable medical experts to investigate how the physical

and social interactional etiopathogenesis shapes AD’s mani-
festation for long-term management and personalized inter-
vention. For example, the duration and intensity of exercise
can be prescribed for personalized intervention. Moreover,
we could identify critical digital biomarkers that contribute
to diagnosis results. For example, phone calls, walking, and
standing have a strong correlation in differentiating AD/non-
AD (see Section 8.4.3).

Ethical and social challenges of real-world deploy-
ment. We have obtained informed consent from users (or
their families for AD patients) before the study, where users
are fully aware of the types of data to be collected and used.
However, there are several areas where we can enhance our
clinical deployment process. First, we will further optimize
the hardware design and clinical study protocol to improve
the level of user acceptance based on collected user feedback
during and after the study. Second, although our system pre-
serves users’ data privacy through FL, we could incorporate
security measures to further safeguard sensitive information
of the system. Finally, although our system achieves reason-
ably good results in different placements and homes, we may
deploy more nodes in other areas of subjects’ homes (e.g.,
mmWave radar in the bedroom and bathroom) to improve
the sensing coverage without compromising users’ privacy.

Apply to other medical conditions/applications. Our
system can be adapted to the longitudinal monitoring of
other chronic diseases that exhibit symptoms related to com-
plex behaviors (e.g., depression and Parkinson’s disease) or
other smart home/building applications that require long-
term user activity information (e.g., energy management and
occupant behavior analysis). In these applications, the weak
labels can be obtained through user interfaces embedded in
smartphones or homes. For example, marking the time of
having lunch automatically labels data during lunch.

10 CONCLUSION AND DISCUSSION
We propose ADMarker, the first end-to-end system that inte-
grates multi-modal sensors and new federated learning algo-
rithms for detecting multidimensional AD digital biomark-
ers in natural living environments. Our system has been
deployed in a four-week clinical trial involving 91 elderly
participants, which detects various biomarkers in real-world
settings and identifies ADwith high accuracy. This study pro-
vides key insights into the development of clinically proven
digital biomarkers for early AD diagnosis and intervention.
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