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ABSTRACT
Traffic camera is one of the most ubiquitous traffic facilities, provid-
ing high coverage of complex, accident-prone road sections such as
intersections. This work leverages traffic cameras to improve the
perception and localization performance of autonomous vehicles
at intersections. In particular, vehicles can expand their range of
perception by matching the images captured by both the traffic cam-
eras and on-vehicle cameras. Moreover, a traffic camera can match
its images to an existing high-definition map (HD map) to derive
centimeter-level location of the vehicles in its field of view. To this
end, we propose AutoMatch - a novel system for real-time image
registration, which is a key enabling technology for traffic camera-
assisted perception and localization of autonomous vehicles. Our
key idea is to leverage landmark keypoints of distinctive structures
such as ground signs at intersections to facilitate image registration
between traffic cameras and HD maps or vehicles. By leveraging
the strong structural characteristics of ground signs, AutoMatch can
extract very few but precise landmark keypoints for registration,
which effectively reduces the communication/compute overhead.
We implement AutoMatch on a testbed consisting of a self-built
autonomous car, drones for surveying and mapping, and real traffic
cameras. In addition, we collect two new multi-view traffic image
datasets at intersections, which contain images from 220 real oper-
ational traffic cameras in 22 cities. Experimental results show that
AutoMatch achieves pixel-level image registration accuracy within
88 milliseconds, and delivers an 11.7× improvement in accuracy,
1.4× speedup in compute time, and 17.1× data transmission saving
over existing approaches.
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1 INTRODUCTION
In this work, we leverage traffic cameras to assist two fundamental
applications of autonomous driving (see Fig. 1): 1) Boosting vehicle
perception. Vehicles will be able to see beyond obstacle occlusions
and expand their range of perception by taking advantage of the
traffic cameras, which are typically mounted a few meters above
ground and hence provide a much wider and almost unobscured
field of view. Specifically, by matching the images captured by
both traffic cameras and itself, an autonomous vehicle can com-
plement and expand its field of view and improve its situational
awareness. 2) High-precision vehicle localization. A traffic camera
can match its images to existing high-definition global maps (HD
maps) to derive centimeter-level location of the vehicles in its view.
This process can be implemented by the infrastructure or cloud
and hence significantly lower the requirements on the vehicle’s
compute/localization capabilities. Such two applications provide
autonomous vehicles with boosted perception and high-precision
localization, which greatly improves the accuracy and reliability of
vehicles’ downstream tasks at complex intersection environments,
including path planning, decision making, and vehicle control. In
this work, we focus on leveraging traffic cameras at intersections
because of the following three reasons. First, intersections are more
accident-prone than other road sections. Second, intersections have
highly complex structures, introducing unique challenges for au-
tonomous driving. Third, to date, most traffic cameras are installed
around intersections [16, 51].

The key technology that enables both above applications is real-
time high-precision image registration, which refers to the process
of finding the homography between two image coordinate systems.
In the above two applications, images from traffic cameras are
registered with those from either vehicles or HD maps. Through
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Figure 1: Two applications of AutoMatch. 1) The vehicle’s perception is
boosted by fusing the perception information of the traffic camera and
2) The vehicle’s high-precision location is derived from a traffic camera
image and an HD map.

registration, the raw data or high-level information such as detec-
tion results of one image can be transformed and merged into the
coordinate system of the other image. There are three challenges in
high-precision image registration involving traffic camera images.
First, these images are taken in dramatically varied conditions (e.g.,
viewpoints, scales and view angles), which poses great challenges
to high-precision registration. Second, to support autonomous driv-
ing, two images need to establish pixel-level correspondences in
real-time (e.g., within tens of milliseconds), which requires the
image registration method to be computationally efficient. Third,
due to the significant dynamics and limited bandwidth between
infrastructures and vehicles, the amount of data sharing required
for registration should be as small as possible.

Although there exist methods for image registration in the com-
puter vision literature [5, 6, 9, 17, 18, 25, 30, 38, 61, 62], they are not
specifically designed for traffic scenarios and yield unsatisfactory
performance in latency, robustness, and accuracy, making them
ill-suited for infrastructure-assisted autonomous driving. Most cur-
rent image registration techniques [5, 6, 9, 17, 18, 25] first extract a
large amount of keypoints throughout two images and then match
them to register two images. Other methods [30, 38, 61, 62] directly
find the correspondences of two images in an end-to-end manner
by leveraging deep learning techniques. The former requires the
transmission of hundreds or thousands of infrastructure keypoints
and features for each frame between infrastructure and vehicle,
whose excessive communication overhead poses a major challenge
in meeting the stringent real-time requirement of autonomous driv-
ing applications. The latter usually requires a large DNN model to
achieve accurate transformation from in the wild images, which
incurs excessive compute overhead on the vehicle and hence is
ill-suited for real-time autonomous driving. Therefore, there still
remains a major gap between the vision of traffic camera-assisted
autonomous driving and the capabilities of current image registra-
tion technologies.

To tackle these challenges, we propose AutoMatch - a novel sys-
tem that accurately registers image pairs from different views in
real-time to support traffic camera-assisted autonomous driving
at intersections. Our key idea is to extract landmark keypoints
of salient structures at intersections to facilitate image registra-
tion. Specifically, AutoMatch first detects and extracts ground signs,
which are the most common semantic objects at intersections and
distinctive structures shared by the images from both vehicle’s

onboard camera and traffic camera. Then, we propose a novel land-
mark keypoint extractor to robustly and accurately locate very few
landmark keypoints of ground signs. The novelty of our design
lies in the integration of a landmark detector and a general key-
point detector. In this paper, we refer to the points extracted by
the general keypoint detector as keypoints, the points extracted by
the landmark detector as landmarks, and the points extracted by
the landmark keypoint extractor as landmark keypoints. Motivated
by the fact that most ground signs have a dominant structural pat-
tern (e.g., arrows), we develop a new landmark detector to find
structurally meaningful landmarks of ground signs and refine them
using a general keypoint detector to achieve sub-pixel accuracy of
the landmark keypoint location. The landmark keypoint extractor
greatly improves the robustness of image registration by elimi-
nating noisy and irrelevant points. At last, we design an efficient
keypoint matching algorithm based on the detected ground signs
and their landmark keypoints from the two images.

To summarize, fundamentally different from the current image
registration methods in the computer vision literature, our sys-
tem offers several key advantages: (i) AutoMatch is robust to envi-
ronments including different types of intersections, traffic signs,
roadside trees and buildings around the intersections, since our
approach only focuses on distinctive structures and filter out unim-
portant information that may affect the accuracy of matching. (ii)
AutoMatch is computationally efficient and memory friendly, which
is crucial for practical deployment in real-world traffic scenarios.
AutoMatch achieves this by only processing small image patches
and extracting few but semantically rich landmark keypoints for
registration. In contrast, existing approaches require processing
the whole image or extracting massive keypoints. (iii) AutoMatch
significantly reduces the communication overhead between infras-
tructure and vehicle for the registration, since it only requires the
infrastructure to share with the vehicle a small number of landmark
keypoints extracted from static structures independent of traffic
dynamics.

We implemented AutoMatch on a real testbed consisting of a
self-built autonomous car, a survey drone for mapping, and real
traffic cameras. In addition, we collect two new multi-view traffic
image datasets, which correspond to the perception and localization
of traffic camera-assisted autonomous driving, respectively. The
first dataset contains 1,136 image pairs from 48 traffic cameras of 19
intersections and onboard cameras of vehicles. The second dataset
contains images from 172 traffic cameras of 32 intersections in 21
cities and the corresponding high-resolution maps. Experiments
show that AutoMatch is able to extend the vehicle’s field of view
by 72.9% on average, with an average image registration error of
3 pixels, which delivers an 11.65× improvement in registration
accuracy compared with the state-of-the-art. Besides, AutoMatch
leverages traffic cameras to provide high-precision localization for
autonomous vehicles with an error of less than 20 cm. Moreover,
AutoMatch only requires the traffic camera to share the data with
the vehicle at a rate of 72Kbps. Lastly, AutoMatch achieves an end-
to-end system latency within 88ms, which enables real-time image
registration for autonomous vehicles.

The rest of this paper is organized as follows: Section 2 intro-
duces related work. Section 3 presents the background, applications,
and challenges. In Section 4, we describe the design of AutoMatch.
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We discuss the collection of two datasets and the system imple-
mentation in Sections 5 and 6, respectively. Section 7 shows the
experiment results and Section 8 concludes the paper.

2 RELATEDWORK
Image Registration. Image registration aims to find correspon-
dence between two images and hasmany applications in autonomous
driving such as camera calibration [26], Simultaneous Localization
andMapping (SLAM) [46], and Structure fromMotion (SfM) [27, 55].
A typical registration pipeline consists of three stages, keypoint
detection, description generation, and keypoint matching. Both clas-
sical [6, 25, 35, 39, 42] and learning-based [53, 69] methods detect
points of interest throughout a whole image. However, they are not
applicable to complex and diverse intersection scenarios since there
is no guarantee that meaningful keypoints for registration can be
extracted at the first step of image registration. The feature descrip-
tors are extracted from a local patch centered around each keypoint
to capture higher-level information and generate robust and precise
representations for keypoints. However, they may suffer from ambi-
guity when there are repetitive contents that are common in traffic
scenarios. Moreover, these descriptors are usually represented as
large-sized feature vectors, which incur significant communication
overhead and are ill-suited for traffic camera-assisted autonomous
driving. The final step, keypoint matching, matches two keypoints
in the two input images that have the most similar descriptors.
Nearest neighbor [45] and fast approximation nearest neighbor
[44] algorithms are two representative methods, but they perform
poorly when encountering too many outlier keypoints. Tracking-
based matching methods are widely adopted in visual SLAM and
can achieve real-time performance. However, they work well only
for two similar images, such as the neighboring frames of a video.
Recent works use Graph Neural Networks (GNN) [52] and trans-
formers [30] to boost the matching performance for challenging
cases. Nevertheless, the methods based on the above three-stage
pipeline require a certain similarity of scales and perspectives of
two images, while the images to be matched in the traffic camera-
assisted autonomous driving usually have significant scale and
viewpoint differences as well as overly repeated contents.

Landmark Detection. The goal of landmark detection is to
localize a group of pre-defined landmarks on objects with seman-
tically meaningful structures. For example, facial landmark detec-
tors [49, 59, 72] predict 5, 20 or 68 fiducial points, outlining the
face boundaries, eye, nose and mouth. Body keypoint detectors
[11, 15, 47, 66] detect 14 or 17 keypoints, indicating shoulders,
wrists, etc. Unlike general keypoint detectors that extract keypoints
in an indiscriminate manner, landmark detectors “recognize” the
semantic part of the object by exploiting the shape pattern, like
symmetry and spatial relationships. Surprisingly, the use of land-
mark detectors for image registration has not been well explored
despite the following advantages: (i) Robustness to noise and out-
liers caused by similar low-level image appearances, as the shape
and structured information provide constraints to each landmark.
(ii) Unlike general keypoint descriptors where each descriptor is rep-
resented as a one-dimensional feature vector, landmarks are more
interpretable and discriminative. However, a critical shortcoming
of landmark detectors is that the predicted landmark location is

usually less accurate compared to general keypoint detectors, and
can not achieve pixel-level registration precision. In this work, we
address this key issue by integrating the general keypoint detector
to refine the detected landmarks to obtain landmark keypoints with
precise locations.

Cooperative Infrastructure-Vehicle or Vehicle-Vehicle Per-
ception and Localization.To improve the perception performance
of autonomous vehicles, Arnold et al. [3] propose a cooperative 3D
object detection scheme, where several infrastructure sensors are
used for multi-view simultaneous 3D object detection. Zhang et
al. [71] propose an edge-assisted multi-vehicle perception system
called EMP, where connected and autonomous vehicles’ (CAVs’) in-
dividual point clouds are optimally partitioned and merged to form
a complete point cloud with a higher resolution. In [43], cameras
and LiDARs are leveraged to assist the localization of autonomous
vehicles. Fascista et al. [21] propose to localize vehicles using the
angle of arrival estimation of beacons from several infrastructure
nodes. Different from these studies where infrastructures or CAVs
have known accurate pose, i.e., position and orientation, we focus
on leveraging existing traffic cameras with unknown poses to assist
autonomous vehicles in both perception and localization through
real-time image registration.

3 BACKGROUND, APPLICATIONS AND
CHALLENGES

In this section, we first review autonomous driving perception
and localization technologies available today, which motivates our
approach.We then present the two applications ofAutoMatch for as-
sisting autonomous driving at intersections. Finally, the challenges
addressed in the design of AutoMatch are discussed.

3.1 Perception/Localization of Autonomous
Driving

Like human drivers, autonomous vehicles must know where they
are on the road (localization) and which objects are in the sur-
roundings (perception). Perception and localization are essential
for autonomous vehicles to make accurate and reliable decisions
for vehicle control. Due to the mission-critical nature, autonomous
driving imposes stringent requirements on the accuracy and delay
of perception and localization [64].

Mainstream autonomous driving platforms typically use a com-
bination of sensors such as cameras, LiDARs, radars, GNSS/IMUs,
and odometers for high-precision perception and localization [37].
Specifically, vehicles consume incoming camera images or LiDAR
point clouds to detect and track obstacles such as moving vehi-
cles and people within. Then the free navigable space is identified
to ensure that the vehicle does not collide with moving objects.
However, on-vehicle sensors have a limited field of view, and the
perception will often be obscured by surrounding objects, which
may unavoidably cause traffic accidents. To achieve high-precision
localization, many commercial vehicles, such as the Google and
Uber cars, use a priori mapping approach [28, 60], which consists
of pre-driving specific roads, collecting detailed 3D point clouds,
and generating high precision maps. Vehicles can store such maps
or download them from the cloud. Localization is then performed
by matching the current sensor data with HD maps. However, the
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Figure 2: Illustration of leveraging traffic camera to boost vehicle percep-
tion.

large size of HD maps, the high latency in transmissions between
the cloud and the vehicle, and the low updating frequency of HD
maps pose significant barriers to wide adoption in practice [56].

3.2 Applications of AutoMatch
Boosting vehicle perception via image registration between
traffic cameras and vehicles. The first application of AutoMatch
is real-time image registration between the traffic camera image and
vehicle image. Image registration establishes the transformation
between the two image coordinate systems of the traffic camera
and the vehicle, so that the vehicle can directly utilize the percep-
tion information in the traffic camera image. The scene perception
information shared from the traffic camera to the vehicle can be
the entire image (with all the details of the scene) or abstract se-
mantic information (such as object bounding boxes). To actually
achieve such benefits, the data transmission volume for registra-
tion needs to be small enough due to the limited communication
bandwidth between the traffic camera and the vehicle. Besides, the
end-to-end traffic camera-vehicle image registration delay needs to
be within tens of milliseconds to meet the real-time requirements
of autonomous driving.

In practice, infrastructures and vehicles need to independently
extract points in their images for registration. Different from other
image registration approaches [5, 17, 19, 35, 57] that would need
the infrastructure to extract points in real-time, AutoMatch allows
the infrastructure to extract points less frequently. This is because
AutoMatch extracts static points in the scene backgrounds, which
remain unchanged most of the time. Once extracted, the infras-
tructure then periodically broadcasts the points and the perception
information (object bounding boxes) extracted on its own coordi-
nate. When a vehicle enters the intersection, it first receives the
points from infrastructure and then matches them with the points
extracted from its own image to calculate the transformation. Then
the vehicle could merge the bounding boxes from the infrastructure
into its field of view. Experiments (Section 7.2.2) show that this
process typically takes a data-sharing rate of only 72Kbps. Fig. 2
shows two typical images from a driving vehicle and a traffic cam-
era. Blue and green boxes show the perceived objects in the views
of the traffic camera and the vehicle, respectively. Due to the occlu-
sion, the vehicle cannot see the remaining 13 vehicles (blue boxes)
while they are visible to the traffic camera. In contrast, the traffic

camera has a broader field of view and is less prone to occlusion
than vehicles. Therefore, autonomous vehicles can leverage the
perception information from the traffic camera to achieve more
comprehensive scene perception.

Note that when there are multiple traffic cameras at one inter-
section, AutoMatch can process the images from all cameras that
may benefit the vehicle one by one and identify the one that is the
most useful to the vehicle. This “naive” design is lightweight since
Experiments (Section 7) show that the added computational over-
head and communication overhead are extremely low compared to
registration with one camera.
Centimeter-level localization via image registration between
traffic cameras and HD maps. The second application of Au-
toMatch is the image registration between the traffic camera image
and an HD map. Fig. 3(a) shows a traffic camera image and an HD
map. An HD map is a highly accurate map where each pixel in it
corresponds to a precise world position. HD maps are usually con-
structed using drones [29, 68] or map data collection cars equipped
with high precision sensors (e.g. LiDARs, digital cameras and RTK
GPS) [33, 65]. HD maps are able to achieve centimeter-level preci-
sion [31, 65]. Fig. 3(b) shows the image registration result between
the HDmap and the traffic camera image, which establishes a dense
correspondence between the pixels in the traffic camera image and
the points in the HD map. Given this correspondence, we could de-
rive the 3D world position for each pixel in the traffic camera image,
establishing a highly lightweight local map for the traffic camera,
which is about the size of an image (around 1MB). As a result, 1)
we can easily find a vehicle’s world position if the vehicle is in the
traffic camera’s field of view; 2) the vehicle doesn’t have to match its
sensor data with HD maps for localization which saves significant
compute overhead. Note that the image registration between the
traffic camera image and the HD map can be a one-time offline task.
Once the registration is completed, the local map of the traffic cam-
era is established. The local map is only related to the pose of the
traffic camera, and hence remains unchanged as long as the traffic
camera is still. To count for possible camera pose changes, the local
map can be updated by periodically performing image registration
between the traffic camera image and the HD map. Specifically, the
traffic camera detects vehicles in view, derives, and broadcasts the
world positions of these vehicles. Each vehicle obtains not only its
own position but also the positions of other vehicles nearby, which
is useful for downstream autonomous driving tasks such as path
planning and collision avoidance. Vehicle identification is needed
in this application. The infrastructure can use vehicle attributes
such as color and type, or other techniques such as license plate
recognition (LPR) [58] or RFID [67] to distinguish different vehicles.
In order to meet the requirement of high-precision localization for
autonomous driving, HD maps and traffic camera images need to
be matched with pixel-level accuracy so that the localization error
can be suppressed within centimeter-level [34].

3.3 Challenges
Despite the promising applications, the design of AutoMatch faces
several major challenges in practice. First, there often exists sig-
nificant scale and viewpoint gaps between the image pairs in the
aforementioned two applications. The reason is that the working
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Figure 3: A traffic camera image and an HD map generated from aerial
images taken by a survey drone. The registration result can be used to
localize vehicles from the traffic camera image.

positions and orientations of the drone that constructs the HD map,
the traffic camera, and the vehicle are usually different. Drones
generally shoot vertically at a height of around one hundred me-
ters from the ground. Traffic cameras are generally installed at a
distance of about 10m to shoot obliquely downward. On-vehicle
cameras are usually installed at a height of about 1.5m above the
ground and are almost parallel to the ground. As a result, the re-
sultant differences in scale, rotation, and viewpoint between two
images will result in poor performance for existing image registra-
tion methods [19, 36], which is consistent with our experimental
results (Section 7.4). Second, images captured in traffic scenes often
contain a large number of repeated textures such as crosswalk lines,
lane lines, etc., which unavoidably lead to similar keypoint patches
and ambiguous keypoint features, resulting in a large number of
false matches [36]. Third, existing image registration methods incur
significant compute and communication overhead. They usually
extract a large number of keypoints for every frame and describe
them in the form of large-size feature vectors, which would need
to be transmitted from infrastructure to vehicle. Moreover, existing
image registration methods typically have high compute overhead,
which cannot be used in autonomous driving scenarios with strin-
gent real-time constraints such as tens of milliseconds of delay.

4 DESIGN OF AUTOMATCH
4.1 Motivation and Overview
Our design objective is to achieve pixel-level image registration in
real-time with low communication overhead under challenging traf-
fic camera-assisted autonomous driving scenarios. As a result, the
image registration results of AutoMatch can assist the perception
and localization of autonomous vehicles, which can benefit various
downstream tasks for autonomous driving such as accident alarm-
ing, route planning, etc. Moreover, in practice, most traffic cameras
are installed around intersections [16, 51]. Our key idea is to utilize
landmark keypoints of domain-specific structures to match image
pairs. Focusing on distinctive structures instead of the whole image
helps to mitigate the adverse effects of large perspective variations
on image registration and eliminate the ambiguity caused by the
repeated contents. It also leads to high compute efficiency because
less data is being processed. We select ground signs such as those

shown in Fig. 5 as regions of interest (ROIs) and extract landmark
keypoints inside each ROI. We then match the corresponding ROIs
and landmark keypoints in the two input images to complete the
registration. We focus on ground signs because they are: 1) usually
required to present at intersections to show vehicle movements
[63]; 2) sufficiently discriminative to serve as target structures for
matching and less repetitive compared with other structures like
crosswalk lines or lane lines; and 3) static structures and hence
lead to a low compute overhead on infrastructure. This is because
the points extracted from ground signs on the infrastructure side
remain largely unchanged, which can be updated less frequently.

Accurately detecting the landmark keypoints of ground signs
plays an important role in the performance of image registration.
However, this is highly challenging due to a variety of imperfections
in real-world settings: incompleteness caused by the limited field of
view, occlusion of vehicles or other objects, stains caused by oil or
water blobs, uneven lighting caused by shadows of trees or vehicles,
or confusion with other objects such as speed bumps or manhole
covers. These imperfections make the keypoint extraction from
ground signs error-prone, as the yellow points shown in Fig. 5. On
the other hand, humans can exploit prior knowledge of ground signs
to robustly extract the locations of keypoints. This inspires us to
apply the idea of landmark detectors to address the challenges faced
by general keypoint detection. Landmark detection learns the prior
shape and appearance of structured objects to localize a group of pre-
defined points. There are numerous landmark detectors designed
to locate the landmarks on human faces (e.g., eye corners, mouth
corners, etc.) or bodies (e.g., shoulders, wrists, etc.).

However, despite the robustness, existing landmark detectors
can not be directly used in our image registration method for the
following two reasons. First, although all faces/bodies have the
same landmark template, there are different categories of ground
signs, and each category has a different landmark template. We
thus design a novel unified landmark template applicable to all
categories of ground signs. Second, landmark detectors can result
in unsatisfactory landmark localization accuracy (shown as green
points in Fig. 5). To address this issue, we propose a newmodule, i.e.,
the landmark keypoint extractor, to integrate the landmark detector
with the general keypoint detector to benefit from both methods:
robustness from the landmark detector and pixel-level localization
accuracy from the general keypoint detector (see the red points in
Fig. 5). One additional benefit of the landmark keypoint extractor is
that the following landmark keypoint matching stage can be highly
computationally efficient. Since all landmark keypoints inside two
ground signs can be easily matched once the ground signs are
matched (see Fig. 6), we only need to match the ground signs in
the image, which reduces the search space to a large extent. Such
efficiency of landmark keypoint matching lies in the fact that the
descriptors of the landmark keypoints are implicitly encoded into
the class of the ground sign and the index from the template point
set.

The system architecture of AutoMatch is shown in Fig. 4. We
first detect the regions of interest (ROI) in both images (Section 4.2).
Then these ROIs are fed into a novel landmark keypoint extrac-
tor to extract landmark keypoints (Section 4.3), which contains a
landmark detection branch, a general keypoint detection branch,
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Figure 4: Framework of our image registration approach for traffic camera-assisted autonomous driving.

Figure 5: Points detected by a general keypoint detector (yellow) [17],
the landmark detector (green) and AutoMatch (red). Note the challenging
conditions caused by occlusion, incompleteness, uneven lighting, and
stains.

      
Figure 6: Illustrations of the landmark keypoint correspondences between
two matched ground signs.

as well as a newly designed Landmark-guided Non-Maximum Sup-
pression (Landmark-guided NMS) module to fuse the two detection
results to obtain accurate landmark keypoints (see Fig. 7). Lastly,
the landmark keypoint matching module (Section 4.4) based on a
newly proposed Group RANSAC algorithm matches the ROIs and
landmark keypoints extracted from previous steps.

4.2 Ground Sign Detector
Given input images, we first locate the region of interest and ignore
the unrelated regions to improve the robustness and computational
efficiency. We focus on ground signs because they are commonly
present in complex traffic sections like intersections. Moreover,
most traffic cameras are installed at busy intersections [16, 51]. We
note that our approach can be easily extended to detect other traffic
ground markers. We carefully categorize ground signs into seven
classes: going straight, turning left, turning right, going straight or
left, going straight or right, turning around, and turning around
or left. We employ YOLOv4 [7], a real-time object detection model

…

Landmark detector

General keypoint
detector Keypoint heatmap

Coarse Landmarks

Accurate landmark 
keypoints

Landmark-
guided 
NMS

ROIs

For each ROI

Landmark keypoint extractor

Figure 7: Design of the landmark keypoint extractor.

widely used in embedded sensing applications, to jointly detect the
bounding boxes of all ground signs in each image and classify each
sign into one of the seven categories. After detection, we crop the
ground signs according to the detected bounding boxes, and each
ground sign will be processed independently in the subsequent
steps as shown in Fig. 7.

Our training dataset consists of two parts: 1/6 images of two
self-collected datasets (Section 5) and the raw images of the “City”
category in the autonomous driving dataset KITTI [23]. We anno-
tate the bounding boxes and classes of the ground signs in images
and finetune the YOLOv4 model in this dataset. Note that ground
signs in different countries and regions may be slightly different,
and the ground sign dataset in our method can be updated accord-
ingly, which will not affect the generality and performance of our
method.

4.3 Landmark Keypoint Extractor
The landmark keypoint extractor is designed to extract the land-
mark keypoints in each ground sign patch in the presence of the
challenges illustrated in Fig. 5. The design of this module is mo-
tivated by the fact that general keypoint detection methods [6,
25, 35, 40, 54, 70] usually consider low-level local features, which
will inevitably be affected by imperfections of ground signs and
hence lead to noisy and unpredictable keypoints (see the yellow
points in Fig. 5). In contrast, we propose to extract landmarks fol-
lowing a pre-defined landmark template. However, unlike facial
landmark detection, which only has a single template, every class
of ground signs has a unique shape. Therefore, We design a uni-
fied landmark template for all ground signs (shown in Fig. 8),
which allows AutoMatch to reuse the existing landmark detection
pipeline. Moreover, since landmark detection can only roughly lo-
calize each landmark but cannot achieve sub-pixel accuracy, we
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Figure 8: Illustration of the unified landmark template (a) and some ex-
amples of ground signs that can be modeled using this template (b).

propose to refine the result of landmark detection using a general
keypoint detector. To this end, a Landmark-guided NMS algo-
rithm is proposed to integrate both detectors to extract the final
landmark keypoints, where the landmarks serve as guidance for
picking the keypoints to achieve more accurate landmark keypoint
localization. Such an approach enables both accurate and highly
robust landmark keypoint extraction despite various interferences
on ground sign appearances. We now discuss each component of
the landmark keypoint extractor in detail.

4.3.1 Landmark Detector. We design a new landmark detector
based on a real-time state-of-the-art facial landmark detector PFLD
[24]. We zero-pad the ground sign patches before feeding them
into the landmark detector to meet the aspect ratio requirement. To
be able to generate landmarks with different templates, we design
a unified landmark template as shown in Fig. 8. All categories of
ground signs are stacked together with similar components merged,
which results in a template with 4 components and a total number
of 22 landmarks. Each landmark has its own ID number, which
implicitly encodes rich semantic information. The neural network
will predict the pixel locations of all 22 landmarks. The output
landmarks of each ground sign class constitute a subset of these
components, e.g., the turning left sign contains component 2, with
a total of 7 landmarks. To achieve this, we define a binary mask𝑀
with a length of 22 for each category of ground sign to mask out
unused landmarks. The mask is predefined and determined by the
class of the ground sign. We then define the training loss as follows:

L := 1
|𝑀 |𝑁

|𝑀 |∑︁
𝑚=1

𝑁∑︁
𝑛=1

𝑀𝑛
𝑚



p𝑛𝑚 − p̂𝑛𝑚


2
2 (1)

where |𝑀 | = 22 is the total number of landmarks and the subscript
𝑚 indicates the𝑚-th point. 𝑁 denotes the batch size. p and p̂ are the
ground truth and predicted locations of each landmark, respectively.
This masked loss means that only the landmarks that fall into the
current ground sign’s category will contribute to the training loss.
The samemask operation is performed in the inference stage, where
only landmarks belonging to the category of the current ground
sign are picked, and other landmarks are discarded.

To train the landmark detector, we crop the ground sign bound-
ing boxes from the training dataset mentioned in Section 4.2. Then
we resize and zero-pad them into patches of size 224× 224 and then
label the landmarks on them. During training, we also add a small
random perturbation of homography transformations to each patch
to augment the training examples.

        
       

       
         

 

           
        

         
        

               

               

                 

           
         
      

         
        

Figure 9: Illustration of the Landmark-guided NMS method for combining
the landmark detector and the general keypoint detector.

4.3.2 Landmark-guided NMS. Despite robustness, the main lim-
itation of the landmark detector is that the detected landmarks
do not fall precisely on the corners of the ground sign (see green
points in Fig. 5). To address this issue, we use the general keypoint
detector to boost positioning accuracy. We adopt the widely-used
general keypoint detector SuperPoint [17], a fast and lightweight
model that computes accurate keypoint locations, which generates
a keypoint response heatmap of the same size as the input. Each
pixel of the heatmap corresponds to the probability of the pixel
that is a keypoint. The training process is similar to the one in
[17]. The difference is that our synthetic dataset only consists of
structures with corners such as quadrilaterals, triangles, lines, and
stars, which strengthens the detection of corner-like keypoints. The
synthetic dataset is rendered on-the-fly, and no example is seen by
the network twice.

We now have the landmarks from the landmark detector and the
keypoint heatmap from the general keypoint detector. Landmarks
capture the global structure and provide guidance for the positions
of final landmark keypoints. By exploiting this property of land-
marks, we look for the maximum response of the keypoint heatmap
around each landmark, to fine-tune the position of landmarks for
the final landmark keypoints. As a result, the final landmark key-
points not only inherit the landmarks’ expression of the global
structure but also precisely localize the corner points. Specifically,
as shown in Fig. 9, we first generate a Gaussian distribution map
centered at each landmark and multiply this Gaussian map with the
keypoint heatmap pixel-wisely. The pixel with the maximum value
in the map is selected as the final landmark keypoint (𝑢, 𝑣). This
operation filters out the keypoints far away from the landmark and
allows the final landmark keypoints to have both rich semantics
and accurate locations. Formally, this can be expressed as:

(𝑢, 𝑣) = argmax
(𝑢,𝑣)

𝐺 (𝑢, 𝑣) · 𝐻 (𝑢, 𝑣), (2)

where

𝐺 (𝑢, 𝑣) = exp
(
−
(
(𝑢 − 𝑢𝑜 )2

2𝜎2
+ (𝑣 − 𝑣𝑜 )2

2𝜎2

))
(3)

is a Gaussian distribution centered on a landmark (𝑢𝑜 , 𝑣𝑜 ) and
𝐻 (𝑢, 𝑣) represents the keypoint heatmap from the general keypoint
detector.

4.4 Group RANSAC
After the previous modules of our pipeline, we now have the ground
sign bounding boxesA andB in the two input images, as well as the
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landmark keypoints belonging to each bounding box. To calculate
the final homography H, we need to find all the inlier correspon-
dence between the landmark keypoints of the two images. We
develop a fast landmark keypoint matching algorithm based on the
traditional Random Sample Consensus (RANSAC) [22] algorithm.
Unlike the classical RANSAC that randomly samples matched point
pairs, we sample pairs of bounding boxes that have the same class.
This is motivated by the fact that two matched signs must belong
to the same class and share the same landmark template (see Fig. 6).
We name our method Group RANSAC, where the landmark key-
points in a template are matched as a group. Specifically, we first
randomly samples two bounding box pairs (A1,B1) and (A2,B2)
from A, and B, respectively, so that the classes of each pair are the
same, i.e., 𝐶𝑙𝑎𝑠𝑠 (A𝑖 ) = 𝐶𝑙𝑎𝑠𝑠 (B𝑖 ) for 𝑖 = 1, 2. We can now easily
obtain the landmark keypoint correspondences from the bound-
ing box pairs since the landmark keypoints of a bounding box are
arranged in a fixed order as shown in Fig. 8. We then estimate
the homography matrix H using all the corresponding landmark
keypoint pairs obtained from the bounding box pairs. We check
the correctness of the estimated H by counting the total number
of inlier landmark keypoint pairs. Two landmark keypoints are
defined as inlier point pairs if 1) they belong to bounding boxes of
the same class, and 2) the reprojection error using H is smaller than
a threshold. When the number of inlier landmark keypoint pairs is
larger than a threshold, we finalize the algorithm by re-estimating
H using all of the inlier landmark keypoint pairs. Otherwise, the
current bounding box pairs are false matches, and we repeat all
of the above steps to continue searching for correct bounding box
pairs.

5 TESTBED AND DATASETS
We built a real-world testbed consisting of existing traffic cameras
at intersections, DJI drones, and a self-built autonomous car (see
Fig. 10). DJI drones are equipped with Ultra HD Lenses (Fig. 10(b))
for generatingHDmaps of intersections. Our self-built car (Fig. 10(a))
is equipped with a small computing unit with an Intel Core i7 CPU
and multiple sensors, including two Pointgrey CM3-U3 cameras
and three LiDARs (a Robosense RS32, a Robosense RS16, and a
Livox AVIA). In this work, we use one camera of the car to cap-
ture images. As there is no dataset consisting of multi-view image
pairs at intersections, i.e., traffic camera-HD map image pairs and
traffic camera-vehicle image pairs, we collect two new multi-view
intersection image datasets for traffic camera-assisted autonomous
driving. One dataset is the traffic camera-vehicle dataset, which
is collected for the evaluation of traffic camera-assisted vehicle
perception. The other dataset is the traffic camera-HD map dataset,
which is collected for the evaluation of traffic camera-assisted vehi-
cle localization. We summarize our two datasets in Table 1. Below
we describe the data acquisition process of each dataset in detail.

For the traffic camera-vehicle dataset, we manipulate our self-
built autonomous car at a speed of 8m/s to collect images of the
vehicle’s view around a city’s intersections. Vehicle images are col-
lected by the cameramounted on the car, which is about 1.5mabove
the ground. Meanwhile, we collect the images of traffic cameras at
these intersections. In total, we collected 4544 traffic camera-vehicle

（a）The self-built car equipped
with sensors and computing unit.

（b）The DJI drone used
for constructing HD maps.

Figure 10: Devices used in the system implementation.

Table 1: Summary of two datasets.

Datasets # inter-
sections

# traffic
cameras

# vehicle
images

# HD
maps

# image
pairs

Traffic camera-
vehicle dataset 19 48 4544 - 4544

Traffic camera-
HD map dataset 32 172 - 32 172

Figure 11: Two examples of the collected traffic camera images with dif-
ferent road types, road widths, and lighting conditions.

image pairs from 48 traffic cameras at 19 intersections. For the traf-
fic camera-HD map dataset, we use DJI drones to capture the aerial
images of intersections at a speed of 9m/s, and then generate HD
maps of these intersections with centimeter-level accuracy using
the drone image processing software ODM [4]. We also collect
images captured by the traffic cameras at these intersections. In
total, we collected traffic camera-HD map image pairs from 172
traffic cameras of 32 intersections in 21 cities. In addition, we label
the corresponding points for each image pair in both two datasets
manually to provide the ground-truth homography.

The collected images in the two datasets cover diverse and com-
plex traffic scenarios with different road types (i.e., crossroads,
T-junctions, highway entrances and exits), road widths (3 lanes to
12 lanes), road conditions (new or old, under construction or not),
and lighting conditions (day and dusk). Some examples of traffic
camera images are shown in Fig. 11. The private information such
as street names, image acquisition timestamps, and license plates
are removed by an independent third-party organization. This data
collection is approved by the governing department of the city,
and the study is approved by the ethics committee of the authors’
institutes.
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6 SYSTEM IMPLEMENTATION AND
EXPERIMENT SETUP

This section introduces the system implementations of the two ap-
plications, i.e., traffic camera-assisted perception and traffic camera-
assisted localization. In the first application, i.e., the traffic camera-
assisted perception, we set up infrastructures and vehicles for per-
ception fusion. We install an NVIDIA Jetson TX2 as the computing
unit on 48 traffic cameras to collect and store the camera images
at 25 fps. We implement AutoMatch on a laptop and use it as the
computing platform at the vehicle end. The laptop is equipped
with an Intel i7-9750H CPU and an NVIDIA RTX2060 Super GPU,
whose computing capability lags far behind that of the mainstream
computing platforms for autonomous driving, such as NVIDIA
DRIVE AGX Pegasus [10, 48]1. We collect the images from the
vehicle camera at 30 fps and store them on the laptop for offline
processing. Moreover, we use an 802.11ac WiFi router for wireless
communication between the Jetson TX2 and the laptop to simu-
late the communication between the traffic camera and the vehicle.
The data transfer takes place through UDP broadcasting, which
transmits the infrastructure key points and perception information
(object bounding boxes). The data transmission frequency is set to
2Hz which is consistent with the frequency of decision-making on
autonomous vehicles [32]. We simply discard extra frames that are
not used for communication. The second application, i.e., traffic
camera-assisted localization, requires image registration between
traffic camera images and HD maps. This application is an offline
task and can be implemented by running AutoMatch with traffic
camera images and HD maps inputs.

We train the ground sign detector and the landmark keypoint
detector with PyTorch [50] using the two datasets (Section 5) on a
server equipped with Intel Xeon Silver 4210 CPU and one Nvidia
RTX2080Ti GPU. The training of the two detectors takes around 20
hours in total. The implementing details can be found in Section
4. For inference, we export the trained models in ONNX format
[2] using TensorRT [1] on Jetson TX2. For a brand-new region, the
ground sign detector and the landmark keypoint detector need to be
retrained or fine-tuned. Therefore the training overhead is roughly
the same as the overhead we mentioned earlier. Considering the
training is a one-time offline task, the overhead is reasonable in
this setting.

7 EVALUATION
In this section, we first define evaluation metrics in Section 7.1.
Then, we present an end-to-end evaluation of AutoMatch in Sec-
tion 7.2. Next, we show application-level results in Section 7.3,
which show that AutoMatch can not only significantly extend the
vehicle’s perception range but also provide vehicles with high-
precision localization. In addition, we compare the performance
of AutoMatch with other methods on two real-world multi-view
intersection image datasets in Section 7.4. Finally, we conduct an
ablation study to validate the effectiveness of our method in Sec-
tion 7.5.

1NVIDIA DRIVE AGX Pegasus can achieve 320TOPS (trillion operations per second)
of computing capability, while that of NVIDIA GeForce RTX 2060 is only 14TOPS.

7.1 Evaluation Metrics
7.1.1 Perception range gain and Field of View (FoV) gain. In or-
der to measure how much autonomous vehicles can benefit from
AutoMatch in perception, we define two application-level metrics,
the perception range gain and the FoV gain. We project the vehicle
image to the traffic camera image using the ground truth homog-
raphy, and then calculate the two metrics in the traffic camera
image coordinate. We quantify the two metrics in pixels instead of
physical distances because 2D images cannot represent distances
in the real world. Perception range gain is the increased ratio in
distance before and after the image registration. It is defined as
(𝐿𝑡𝑟𝑎𝑓 /𝐿𝑝𝑟𝑜 𝑗 −1) ×100%, where 𝐿𝑡𝑟𝑎𝑓 and 𝐿𝑝𝑟𝑜 𝑗 are the lengths (in
the vehicle’s heading direction) of the traffic camera image and the
projected vehicle image in pixels, respectively. FoV gain is the in-
creased ratio in area, which is defined as (𝑁𝑡𝑟𝑎𝑓 /𝑁𝑝𝑟𝑜 𝑗 − 1) × 100%,
where 𝑁𝑡𝑟𝑎𝑓 and 𝑁𝑝𝑟𝑜 𝑗 are the total pixel numbers of the traffic
camera image and projected vehicle image, respectively.

7.1.2 RRE, RTE, and localization error. To evaluate the performance
of AutoMatch in assisting the localization of autonomous vehicles,
we first measure how accurate the traffic camera can localize ve-
hicles in world coordinate, which is equivalent to measuring the
accuracy of the dense correspondence between pixels in the traffic
camera image and those in the HD map. Specifically, we measure
localization error, the distance between the localized world position
of the vehicle in the constructed traffic camera local map and the
ground truth position of the vehicle in the HD map. This metric
reflects the accuracy of the local map. Another metric to measure
the performance of traffic camera-assisted vehicle localization is
the accuracy of traffic camera pose estimation. Only if the pose
estimation of the traffic camera itself is accurate can it accurately
locate the vehicles in its field of view. The traffic camera pose can
be derived based on the homography between the image and the
HD map. We adopt two metrics - the relative rotation error (RRE)
and the relative translational error (RTE) used in [13, 14, 20] to
evaluate the errors of the estimated traffic camera poses. RRE is
defined as:

𝐸𝑅 = |𝜃 | + |𝜙 | + |𝜓 |
(𝜃, 𝜙,𝜓 ) = 𝐹

(
𝑅−1
𝑇

𝑅𝐸

) (4)

where 𝑅𝑇 and 𝑅𝐸 are the rotation matrices decomposed from the
ground-truth homography and the estimated homography, respec-
tively. 𝐹 (·) transforms a rotationmatrix to three Euler angles (𝜃, 𝜙,𝜓 ).
RRE is the sum of the absolute differences in three Euler angles. RTE
is defined as: 𝐸𝑇 = ∥𝑡𝑇 − 𝑡𝐸 ∥2, where 𝑡𝑇 and 𝑡𝐸 are the translation
vectors decomposed from the ground-truth homography and the
estimated homography, respectively.

7.1.3 Reprojection error and MMA. To compare the image regis-
tration performance with other algorithms, we follow the same
methodology in [19, 41], which computes the reprojection error
and the mean matching accuracy (MMA). Reprojection error is the
Euclidean distance between the observed image point 𝑝 and the
image point 𝑝′ reprojected from the other image. It reflects the
accuracy of the estimated homography transformation. MMA is
the average percentage of correct keypoint matches per image pair.
A keypoint match is considered correct if its reprojection error
estimated using the ground truth homography is below a given
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Figure 12: The delay and reprojection error in an end-to-end evaluation
experiment where our vehicle passes by roadside traffic cameras.

Figure 13: The reprojection errors in end-to-end evaluation experiments
where the vehicle goes at different speeds.

Figure 14: Sensing distance gain in the process of the vehicle gradually
approaching the traffic camera.

threshold. This metric measures: 1) the repeatability of the key-
points: the same points in the two images need to be detected. 2) the
distinguishability of the keypoints detected: two different keypoints
that look similar should not be confused as one. 3) the quality of
the matching algorithm.

7.2 End-to-End System Evaluation
7.2.1 Delay and error. To evaluate the end-to-end system perfor-
mance of AutoMatch, we implement our system as described in
Section 6. We take a typical process where a vehicle passes by an
intersection as an example. The laptop continuously receives data
from the Jetson TX2 and registers the traffic camera image with its
own image. We record the results of the image registrations and
then calculate the reprojection errors, the perception range gains,
and the end-to-end delay. Note that the end-to-end delay includes
both communication delay and processing time. The three metrics
demonstrate the registration accuracy, the perception improvement,
and the real-time performance of AutoMatch. Since delay is a major
concern in autonomous driving, we also report the maximum delay
among multiple experiments.

Fig. 12 shows that themaximum end-to-end delay is 82ms, which
is faster than the processing speed (typically 100ms per image) of
mainstream image-based visual tasks [12]. The results show that

Table 2: The communication overhead of different methods for boosting
vehicle perception.

Methods Data size for
registration

Overall shared
data size

Bandwidth
needed

SIFT 73.8 KB 76.9 KB 1.2 Mbps
SuperGlue 121.2 KB 124.3 KB 2.0 Mbps
D2-Net 31.7 MB 31.7 MB 507.2 Mbps

AutoMatch 1.4 KB 4.5 KB 72 Kbps

AutoMatch is able to register the images from traffic cameras and
vehicles in real time. We can also see that AutoMatch achieves pixel-
level image registration between traffic camera images and vehicle
images. The reprojection error can be a bit larger when the vehicle
is far away from the traffic camera or when it drives away from
the traffic camera. We also evaluate the performance of AutoMatch
when the vehicle goes at different speeds. Fig. 13 shows that when
the vehicle’s speed is 16m/s, the reprojection error is similar to
that at 8m/s. Fig. 14 shows the sensing distance gain vs. distance
between the vehicle and the traffic camera. The result shows that
when the vehicle has not yet entered the camera’s field of view, the
perception range can be increased by around 65%. This is because
the perception improvement is more significant when the overlap of
the two fields of view is small. The perception range gain becomes
stable at around 45% when the vehicle enters the traffic camera’s
field of view.

7.2.2 Communication overhead. In the following evaluation, we
compare AutoMatch with four image registration algorithms. These
baselines have the same settings as AutoMatch: Input two images
and output the homography between the two images. (i) SIFT [35],
a traditional and the most widely used image registration algo-
rithm; (ii) SuperGlue [52], an algorithm based on Graph Neural
Network(GNN) proposed recently and also one of the state-of-the-
art (SOTA) image registration algorithms; (iii) COTR [30], the latest
registration algorithm based on transformer; (iv) D2-Net [19], a
typical CNN-based algorithm. The implementation of SIFT is from
OpenCV [8]. For the other three baselines, we used the codes pub-
lished by the authors and adjusted the parameters to yield the best
performance in our datasets.

We evaluate the communication overhead of AutoMatch for traf-
fic camera-vehicle image registration by comparing it with these
baselines. Communication is a simple channel from the traffic cam-
era to the vehicle. The total data to be shared consists of two
parts: one used for registration, i.e., the extracted keypoints and the
keypoint descriptors, and the other is the perception information,
which is implemented as the object bounding boxes. We do not
compare with baseline COTR since it registers two images in an
end-to-end manner, which requires the infrastructure to directly
share raw images. We evaluate the average data volume used for
registration and the overall average data volume shared between
traffic cameras and vehicles. Besides, we also evaluate the com-
munication bandwidth needed for each method. The frequency of
data broadcasting from the traffic camera is set to 2Hz as discussed
in Section 5. Table 2 shows the evaluation results on the traffic
camera-vehicle dataset. It can be seen that AutoMatch reduces the
data volume for registration and the overall shared data volume by
about 53× and 17× compared with SIFT baselines. AutoMatch only
needs to transmit 4.5KB data per frame to boost vehicle perception,
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Figure 15: Histograms of perception range gain and FoV gain before and
after registration.

among which only 31% are used for registration, compared to that
of almost 100% for other baselines. The three baselines demonstrate
high communication overhead since they extract massive keypoints
and heavy descriptors for each keypoint. Besides, the bandwidth
requirement of AutoMatch is as low as 72Kbps, which can be easily
supported by the current LTE network.

7.3 Application-Level Results
In this section,We first evaluate howmuch application-level percep-
tion and localization benefits AutoMatch can bring to autonomous
vehicles using real traffic datasets. This evaluation supports our
claims that: (i) AutoMatch implements and extends the vehicle’s
perception to areas that cannot be seen without the traffic camera-
vehicle image registration; (ii) AutoMatch accurately constructs
the local map of the traffic camera by matching the traffic camera
image with an HD map, which enables the traffic camera to localize
vehicles in its view. Then we discuss the robustness of AutoMatch
to different lighting conditions and traffic conditions.

7.3.1 Boosting vehicle perception. For each traffic camera-vehicle
image pair, we calculate the perception range gain and FoV gain of
the vehicle after image registration. As the perception range gain
and FoV gain vary under different situations (e.g., different scenes,
the relative position between the vehicle and the traffic camera),
we instead plot the distributions of these two metrics in Fig. 15.
It can be seen that AutoMatch significantly improves autonomous
vehicles’ perception range by an average of 47.6%, and increases
the vehicle’s FoV by an average of 72.9%. In the best case, the FoV
of the vehicle can be more than doubled.

7.3.2 High-precision vehicle localization. We present localization
evaluation by comparing it with the four image registration al-
gorithms introduced in Section 7.2.2. Table 3 shows the average
RRE and RTE scores of AutoMatch and four baselines on the traffic
camera-HD map dataset. The average RREs of all four baselines
are more than 30◦, while AutoMatch only generates 2.41◦ RRE. The
average RTEs of baselines are larger than 42 cm while AutoMatch
is less than 10 cm. The large RREs and RTEs from baselines intro-
duce non-trivial challenges to localizing autonomous vehicles. In
contrast, AutoMatch outperforms the four baselines by 7.7% and
22.73% ∼ 4.04% in average RREs and RTEs, respectively.

We then calculate the localization error of AutoMatch for lo-
calizing autonomous vehicles. To visualize the results intuitively,
we visualize a localization error map in Fig. 16, which shows the
localization error when a vehicle appears in different positions in
the camera’s field of view. In other words, the error map shows the
accuracy of the local map. We can see that the localization error is
smaller than 20 cm in 70% of the region. Note that at the top of the

Table 3: Traffic camera pose estimation results of baselines and AutoMatch
on the traffic camera-HD map dataset.

Methods RRE RTE
SIFT 102.71° 236.75 cm

SuperGlue 31.25° 42.11 cm
COTR 79.43° 57.43 cm
D2-Net 68.22° 52.39 cm

AutoMatch 2.41° 9.57 cm

    

     

   
                      

                  
                      

Figure 16: A color-coded localization error map.

(a) 

(c) (d) 

(b) 

Figure 17: Illustration of the robustness of AutoMatch. (a) and (b) show the
result of AutoMatch in a dimly lit evening with a ground sign completely
obscured by a white vehicle. (c) and (d) show the result in bright daytime
with two ground signs partially obscured by two black vehicles.

error map, the localization error is relatively large, because each
pixel at that region typically occupies more than 15 cm in world
space.

7.3.3 Performance under varied lighting and traffic conditions. Next,
we use two typical results in the traffic camera-vehicle datasets
to discuss the robustness of our system under different lighting
conditions and traffic conditions. Heavy traffic may cause differ-
ent degrees of occlusions of ground signs. Fig. 17 show two traffic
camera-vehicle image pairs captured in the dimly lit evening and
bright daytime respectively. Results show that AutoMatch can work
well in different lighting conditions. This is because we apply data
augmentation techniques such as brightness level changes, motion
blur, and homography warps in the training process to improve
AutoMatch’s robustness to lighting and viewpoint changes. For
the case where the ground sign is fully or partially occluded, we
also show two examples in Fig. 17(a,c). In Fig. 17(a), a ground sign
is completely occluded by a white vehicle. There are also ground
signs that are not visible from the traffic camera and the vehicle
camera at the same time. Results show that our method success-
fully registers the images. This is achieved by the fact that the
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Figure 18: Qualitative results of the four baselines and AutoMatch in a real
traffic scene. AutoMatch detects fewer keypoints (yellow) while estimates
all correct matches (green) without false matches (red).

Group RANSAC algorithm maximizes the matches between the sets
of ground signs in the two images without requiring them to be
identical. In Fig. 17(c), two ground signs are partially obscured by
vehicles. However, our method still successfully estimates the lo-
cations of occluded landmark keypoints thanks to the landmark
keypoint extractor, which encodes the structure prior of the ground
sign. In conclusion, the proposed system is robust to a certain level
of occlusions or incompleteness.

7.4 Performance Comparison
We present extensive performance evaluations by comparing with
the same four baselines in Section 7.3.2 on the two datasets. We
visualize a typical example of the registration result in a real traffic
scene in Fig. 18. We can see that all baselines produce hundreds or
even thousands of keypoints but can only correctly match a few
of them. The reason is that the baselines tend to extract keypoints
on the roadside or distant buildings and trees, which are indistin-
guishable from each other or even not co-visible in both images.
This not only makes the registration inefficient but also produces
less accurate results due to lots of false matches. On the other hand,
AutoMatch only focuses on landmark keypoints of ground signs
and matches them accurately thanks to our landmark keypoint
extractor.

Table 4 shows the numeric results of AutoMatch and other base-
lines on the two real traffic datasets, where we report the reprojec-
tion error, MMA, and run time. For reprojection error, AutoMatch
is at most a quarter of the most accurate baseline. For MMA, all
four baselines are less than 50%. In contrast, AutoMatch achieves
more than 90% correct matches in both datasets. This is because the
baselines tend to detect many irrelevant keypoints, thus lowering
the distinguishability of the keypoints and increasing the difficulty
of keypoint matching. While in AutoMatch, focusing on common

Table 4: Results of different registration algorithms on the two real traffic
datasets.

Datasets Methods Reproj.
error Run time MMA

Traffic camera-
vehicle dataset

SIFT 218.256 px 7.440 s 17.58%
SuperGlue 74.579 px 0.143 s 47.13%
COTR 91.587 px 174.730 s 40.77%
D2-Net 77.003 px 1.543 s 29.23%

AutoMatch 2.986 px 0.043 s 96.01%

Traffic camera-
HD map dataset

SIFT 143.476 px 0.629 s 12.39%
SuperGlue 49.106 px 0.125 s 49.74%
COTR 68.402 px 67.713 s 35.22%
D2-Net 61.284 px 0.921 s 21.16%

AutoMatch 4.215 px 0.088 s 92.83%

key structures allows us to detect landmark keypoints that have
high overlap rates in both images, and the explicit semantics of the
landmark keypoints allows us to match them easily. For run time,
AutoMatch is 1.42 to 4063 times faster than other baselines. The run
time of COTR is significantly longer than the other three baselines
due to the use of transformer architecture. We can also see that
AutoMatch’s performance on the traffic camera-HD map dataset
is slightly worse than that on the traffic camera-vehicle dataset.
This is reasonable because HD maps have much higher resolutions
than vehicle images, i.e., 7900 × 7900 vs. 1920 × 1080, and cover
a broader range. High resolution naturally leads to numerically
larger reprojection errors as the reprojection error is evaluated on
the pixel. Broader range results in more matching ground sign pairs
between HDmaps and traffic camera images, which further leads to
a longer search time for the landmark keypoint matching module,
and finally results in a longer run time.

Fig. 19 shows some qualitative image registration results on
the traffic camera-HD map dataset, which shows that AutoMatch
achieves more precise image registration results compared to other
baselines (see the anastomosis of crossroads). Note that AutoMatch
not only focuses on the ground sign structures nearby but also
manages to match ground signs at distance, which further improves
the registration accuracy.

7.5 Ablation study
We validate our landmark keypoint extractor with an ablation study.
The ablation aims to prove the effectiveness of our design of inte-
grating the landmark detector with the general keypoint detector.
We compare our full landmark keypoint extractor (Full) with abla-
tions that with only the landmark detector (LD only) or only the
general keypoint detector (GKD only) to generate the final key-
points. Other modules of our pipeline are kept unchanged. Note
that when we extract keypoints using only the general keypoint
detector, the keypoints are unstructured and thus can not be used
in the proposed Group RANSAC. Therefore, we adopt SuperGlue and
Nearest Neighbor search (NN ) [45] as the keypoint matching meth-
ods when we experiment the GKD only. We report reprojection
error, MMA, keypoint detection run time, and keypoint matching
run time on the traffic camera-vehicle dataset at Table. 5.

We can see that while being slightly slower than others in terms
of keypoint detection run time, our Full model achieves the small-
est reprojection error and highest MMA. And the proposed Group
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Figure 19: Registration results between an HD map and a traffic camera image in the real traffic scene.

Figure 20: Qualitative results of ablation study. Note that the LD only +
Group RANSAC tends to detect inaccurate landmark locations as high-
lighted in blue.

RANSAC achieves at least two orders of magnitude faster than the
SOTAmatching algorithm SuperGlue. We also visualize the matches
in Fig. 20. We can see that without the guidance of landmarks, GKD
only + SuperGlue andGKD only + NN produce many noisy and indis-
criminative keypoints and further lead to numerous false matches,
which are consistent with the quantitative results in Table 5. On
the other hand, if we only use the landmark detector (LD only +
Group RANSAC), although the landmarks are correctly matched, as
highlighted in blue in Fig. 20, they suffer from inaccurate location,
which causes performance degradation. By contrast, our Full model
predicts accurate structured keypoint locations and matches all of
them correctly by combining the benefits of the general keypoint
detector and the landmark detector. Besides, it is also worth notic-
ing that the performance of GKD only + SuperGlue is significantly
better than the SuperGlue in Table 4. They share the same pipeline
with the only difference being that the GKD only + SuperGlue works
on bounding boxes instead of the whole image, which validates our
core idea of focusing on key structures instead of the whole image.

Table 5: Quantitative results of ablation study.

Methods Reproj.
error MMA Detection

time (ms)
Matching
time (ms)Detector Matching

LD only Group RANSAC 6.53 px 92.60% 37.91 0.23
GKD only SuperGlue 17.65 px 72.01% 36.24 24.61
GKD only NN 53.48 px 57.89% 36.51 0.54

Full Group RANSAC 2.99 px 96.01% 43.24 0.21

8 CONCLUSION AND FUTUREWORK
In conclusion, we present AutoMatch, the first system that matches
traffic camera-vehicle image pairs or traffic camera-HD map im-
age pairs at pixel-level accuracy with low communication/compute
overhead in real-time, which is a key technology for leveraging
traffic camera for assisting the perception and localization of au-
tonomous driving. Extensive evaluations on two self-collected datasets
show that AutoMatch outperforms SOTA baselines in robustness,
accuracy, and efficiency. In the future, we will extend our approach
to integrate the perceptions of multiple cameras which are typically
installed in different directions around a road intersection. We will
also study how to leverage such results to assist the perception and
localization of autonomous vehicles.
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