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ABSTRACT
In recent years, Deep Neural Network (DNN) has been increasingly
adopted by a wide range of time-critical applications running on
edge platforms with heterogeneous multiprocessors. To meet the
stringent timing requirements of these applications, heterogeneous
CPU and GPU resources must be efficiently utilized for the infer-
ence of multiple DNN models. Such a cross-processor real-time
DNN inference paradigm poses major challenges due to the inher-
ent performance imbalance among different processors and the lack
of real-time support for cross-processor inference from existing
deep learning frameworks. In this work, we propose a new system
named BlastNet that exploits duo-block - a new model inference ab-
straction to support highly efficient cross-processor real-time DNN
inference. Each duo-block has a dual model structure, enabling
efficient fine-grained inference alternatively across different pro-
cessors. BlastNet employs a novel block-level Neural Architecture
Search (NAS) technique to generate duo-blocks, which accounts for
computing characteristics and communication overhead. The duo-
blocks are optimized at design time and then dynamically scheduled
to achieve high resource utilization of heterogeneous CPU and GPU
at runtime. BlastNet is implemented on an indoor autonomous driv-
ing platform and three popular edge platforms. Extensive results
show that BlastNet achieves 35.07 % less deadline missing rate with
a mere 1.63% of model accuracy loss.

CCS CONCEPTS
• Computer systems organization → Real-time system ar-
chitecture; Embedded systems; • Computing methodologies
→ Concurrent computing methodologies; Computer vision
tasks.
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1 INTRODUCTION
CPU-GPU heterogeneous architectures are increasingly popular for
edge platforms, thanks to their capability of accelerating DNN infer-
ence [33, 35, 37]. For example, NVIDIA Xavier [40], a mainstream
industrial edge platform, has an 8-core CPU and a Volta GPU. Such
heterogeneous multiprocessor platforms can enable a wide class
of applications where multiple real-time DNN inference tasks are
conducted on the edge concurrently, such as autonomous driving
[28], smart roadside infrastructure [43], and embedded computer
vision [57]. For example, a smart lamppost [60] equipped with an
NVIDIA TX2 platform (a 6-core ARMCPU + a Pascal GPU) may run
concurrent real-time DNN inference for license plate detection [56],
pedestrian/vehicle tracking [7, 29], and even collision detection and
warning for autonomous driving vehicles [22, 36].

However, existing works have not fully explored the heteroge-
neous processors on these platforms for DNN inference. First, most
current solutions focus on accelerating DNN inference on a single
AI accelerator (e.g., GPU or NPU) [8, 47]. Quantization techniques
[9, 13] can achieve efficient DNN inference on CPU, while some
search for efficient model architectures with direct measurements
on each processor [2, 6, 49, 54]. However, these techniques can-
not be extended directly to utilize the CPU-GPU heterogeneous
architecture. Second, existing Deep Learning (DL) frameworks such
as PyTorch and TensorFlow only support monolithic DNN model
scheduling, which allocates the whole DNN model inference to
either CPU or GPU statically. In addition, an urgent DNN task can-
not preempt the inferences of other DNNs in time. Recent studies
[55, 59] partition the DNN model into sub-tasks for fine-grained
DNN inference scheduling. However, since the GPU is generally
more powerful than the CPU, offloading to a spare process can still
lead to non-trivial waiting time.
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In this work, we propose a new Block-Level model optimizAtion
and Scheduling sysTem - BlastNet, which supports highly efficient
cross-processor real-time inference of concurrent DNNs on het-
erogeneous multiprocessor platforms. The design of BlastNet is
based on duo-block - a new model inference abstraction. Each duo-
block has a dual model structure, consisting of a CPU block and a
GPU block, which hence enables dynamic alternative execution of
DNN across processors. To optimize the DNN model for efficient
inference on different processors, we propose a novel duo-block gen-
eration algorithm that jointly considers layer-level computing and
communication characteristics, as well as the operator fusion rules.
By adopting a neural architecture search algorithm, our approach
generates highly optimized CPU/GPU blocks that speed up the
execution on different processors. Lastly, we design a new dynamic
cross-processor scheduler which prioritizes each DNN duo-block
based on its urgency and supports flexible and dynamic schedul-
ing of duo-blocks on CPU-GPU heterogeneous resources, which
meets stringent timing requirements of concurrent real-time DNN
applications.

We implement BlastNet on three mainstream CPU-GPU het-
erogeneous edge platforms and an indoor autonomous driving
platform. Our extensive experiments show that BlastNet can en-
able cross-processor real-time DNN model inference to achieve
satisfactory real-time performance. Moreover, compared to several
state-of-the-art baselines with fine-/coarse-grained scheduling poli-
cies, BlastNet can reduce deadline missing rate up to 35.07% while
only sacrificing negligible DNN model accuracy. In summary, this
paper makes the following key contributions:

• We propose a novel model inference abstraction - duo-block
to support efficient DNN model inference on CPU-GPU het-
erogeneous platforms.

• We design a duo-block generation algorithm that optimizes
DNN models to different processors in the block-level granu-
larity based on Neural Architecture Search (NAS) techniques.

• We design a dynamic cross-processor scheduler that sup-
ports flexible and dynamic allocation of model blocks on
CPU-GPU heterogeneous resources at runtime, which sig-
nificantly improves the CPU/GPU utilization for concurrent
real-time DNN inferences.

• We implement BlastNet and evaluate the performance through
extensive experiments on three mainstream CPU-GPU het-
erogeneous edge platforms. Our results provide key insights
into supporting real-world time-critical DNN applications
on heterogeneous edge platforms.

The rest of the paper is organized as follows. Section 2 reviews
the related work, Section 3 introduces the background and a mo-
tivational case, Section 4 describes the system design of BlastNet,
Section 5 illustrates the detailed component design of BlastNet, Sec-
tion 6 evaluates the performance of BlastNet, Section 7 discusses
the scalability of BlastNet and Section 8 concludes the paper.

2 RELATEDWORK

Model Partitioning for Cross-Processor DNN Inference. Con-
sidering the limited resource on edge platforms, some approaches
offload the workloads of DNN inference to the cloud [26, 61–63].

A common solution is partitioning the DNN model and offloading
partial model inference to the cloud. This idea can be extended to
heterogeneous platforms for efficient resource utilization [11, 19,
20, 55, 58, 59]. DART [55] partitions a DNN model in a layer-level
granularity and schedules layers among CPU and GPU processors.
Heimdall [59] proposes to partition a DNN model into the unit
of consecutive DNN operators, which are scheduled efficiently to
share the GPU and also offloaded some units to the CPU. Band [19]
partitions a DNN into a set of subgraphs, and dynamically selects a
schedule of subgraphs from multiple possible schedules at run-time.

However, obtaining significant real-time performance gains is
challenging due to the large differences between different proces-
sors. Offloading a single DNN layer from a powerful processor to a
weaker processor may not accelerate the execution, but instead can
block the DNN inference due to slower execution on the weaker
processor. We will show a more detailed analysis of the challenges
arising from this DNN inference diversity on different processors
in Section 3.

Hardware-AwareNAS.Hardware-aware neural architecture search
(NAS) aims to find effective neural network architectures for spe-
cific platforms automatically. It has recently been applied to meet
various performance requirements on resource-constrained hard-
ware platforms [2, 6, 49, 54]. ProxylessNAS [2] searches for neural
architectures for a specific processor (e.g., CPU and GPU) with per-
formance metrics on different hardware platforms. MnasNet [49]
performs hardware-aware NAS via directly measuring real-world
inference latency on smartphones. However, these works search
the entire DNN model architecture space for a specific processor,
which cannot be applied efficiently to heterogeneous platforms
with different types of processors.

DNN Model Replacement. Another research direction related
to our work is DNN Model Replacement. DFN [27] selects a set of
well-known functions to replace the DNN model. However, DFN
focuses on replacing the entire DNN model, which cannot be di-
rectly generalized for DNN model adaptation in the layer-level
granularity. Another work considering layer-wise replacement of
DNN models is LegoDNN [12], which enables block-level DNN
training and scaling. However, LegoDNN is designed for platforms
with a single type of processor. Moreover, it does not account for
the (possibly high) communication overhead between layers for
cross-processor DNN inference.

Joint Model Optimization and Scheduling. LalaRAND [21] cou-
ples the model quantization technique with fine-grained CPU/GPU
resource allocation to address the asymmetric nature of DNN in-
ference on CPU-GPU platforms. However, the benefits from quan-
tization are hardware dependent, with many factors affecting the
quantization speed up [9]. Besides, layer-level scheduling may lead
to high overhead for DNN inference due to communication over-
head. Asymo [51] adopts matrix multiplication partitioning and task
scheduling to alleviate the unbalanced task distribution on mobile
CPUs. Both works focus on optimizing DNN inference on specific
processors and do not apply to other heterogeneous platforms with
different types of processors. RT-mDL [33] supports real-time DL
tasks via joint model scaling and scheduling, which is applicable to
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Figure 1: Concurrent DNN inference under PyTorch frame-
work on heterogeneous CPU-GPU platforms.

heterogeneous platforms with different types of processors. How-
ever, RT-mDL does not optimize the model architecture for different
processors and adopts the fixed-priority model-level DNN sched-
uling at runtime, which cannot utilize cross-processor resources
efficiently, as shown in our results (Section 3.2 and 6.4). Compared
with the above approaches, our work provides a new approach that
exploits holistic block-level model architecture optimization and
scheduling for real-time cross-processor DNN reference.

3 BACKGROUND AND MOTIVATION
In this section, we first discuss the status quo for DNN inference
on heterogeneous CPU-GPU platforms, and then profile the com-
pute characteristics of cross-processor DNN inference. The results
provide key insights into our design of duo-block. In our profiling
experiments, we select three DNN models - AlexNet [25], VGG11
[46], ResNet18 [15], which have been adopted by a wide range of
edge applications. The training of these models is based on the
CIFAR-10 [24] (for image classification) and GTSRB [48] (for sign
recognition) datasets, and the inference is executed and profiled on
a typical desktop-class platform (Intel i9 CPU + NVIDIA RTX 2080
GPU) and a GPU-accelerated edge platform (NVIDIA AGX Xavier).

3.1 DNN Inference on CPU-GPU Platform
In this work, we focus on heterogeneous architectures that consist
of CPU and GPU processors, which are increasingly adopted by
embedded and edge systems to accelerate the inference of DNN. For
example, Google Pixel 6 [10] has an 8-core CPU as well as a Mali-
G78 MP20 GPU. NVIDIA Xavier [40], an industrial edge platform,
has an 8-core CPU and a Volta GPU.

Current mainstream deep learning frameworks, such as PyTorch,
TensorFlow, and MXNet, monolithically allocate heterogeneous
resources for concurrently executed DNN models. For example, as
shown in Fig. 1, PyTorch allocates each DNN model to a single
type of processor (e.g., CPU or GPU) before its execution. One
or more inference threads then execute the model’s forward pass
on the specified processor. Each thread invokes a JIT interpreter
that executes the operators (OPs) of a model inline, one by one
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Figure 2: Worst-case execution time for concurrent DNN
model inference on CPU-GPU platform under different re-
source allocation strategies.

[42]. In such a case, urgent tasks assigned to an occupied processor
can easily miss their deadlines, even though there exists resource
available on other processors. Since the processor affinity of each
model is fixed before its execution, the DNNmodel inference cannot
be offloaded to different processors at runtime.

Moreover, as shown in Fig. 1, DNN models allocated to GPU
launch intra-OP kernels (e.g., aten::cudnn_convolution) to the stream
of GPU. A sequence of kernels in the stream is then executed in
FIFO order [39]. Similarly, DNN models allocated to CPU execute
their OPs in a round-robin manner (possibly on different cores).
In both cases, the DNN models that occupy the same processor
(either CPU or GPU) must contend for the resource, in spite of their
real-time requirements.

3.2 Model-Level DNN Inference
To support concurrent model inference on CPU-GPU heteroge-
neous platforms, the common wisdom is to allocate models to
different processors for resource sharing. In this section, we in-
vestigate whether such a model-level strategy enables efficient
concurrent DNN inference. To this end, we profile the model-level
compute characteristics in the presence of resource contention
from concurrent DNN inference. As shown in Fig. 2, we profile the
worst-case execution time (WCET) of three types of DNN models
under different resource allocation strategies. WCET is a typical
performance metric for understanding the timing behavior of real-
time tasks under the worst case (e.g., with the most severe resource
contention) [53]. We run a total of 10 DNN models of each type
concurrently under two different resource allocation strategies, i.e.,
running all tasks on GPU or running all but one task on CPU (i.e.,
offloading one of the tasks to CPU). We note that offloading more
tasks is not beneficial due to the inefficiency of model inference on
the CPU. As a comparison, we also profile the WCET of running a
single DNN inference on GPU.

Specifically, we create an independent thread for each DNN
model inference and allocate it to the CPU or GPU on a typical
desktop-class platform. We run each DNN inference task 1,000
times and record the WCET. To avoid the biases caused by long
model initialization delays, we exclude the first five runs in the
WCET calculation. Fig. 2 clearly demonstrates the inefficient model
execution under both resource allocation strategies. For example,
the WCETs of running all 10 inference tasks on GPU are 60.97×,
48.08×, and 36.06× the delays of running the single model inference,
for AlexNet, VGG11, ResNet18, respectively. Such a significant
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Figure 3: CPU/GPU execution ratio for each DNN layer.
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Figure 4: Layer delay by executing each layer on the processor with the shortest inference time (CPU Utilization: 9.05% for
VGG11, 13.37% for AlexNet, GPU Utilization: 65.59% for VGG11, 73.39% for AlexNet, Communication Overhead: 25.35% for VGG11,
13.37% for AlexNet).

delay increase for concurrent inference is caused by the resource
contention under the model-level execution mechanism, which
validates the observation discussed in Section 3.1. Moreover, it is
shown that offloading tasks to the CPU is not helpful, and suffers
even higher delays. This is because the model inference on the CPU
is much slower than on the GPU. In summary, allocating DNN
models to CPU and GPU in a model-level granularity leads
to severe resource contention.

3.3 Layer-level DNN Inference
A DNN model usually consists of various layers such as convolu-
tional, fully-connected, and max pooling layers. Thus, an idea to
achieve better resource utilization than the model-level allocation
strategy is executing DNN layers on different processors. In this
section, we examine the performance imbalance of DNN inference
among processors and then investigate whether the layer-level allo-
cation strategy is efficient on CPU-GPU platforms. Since the current
DL frameworks such as PyTorch and TensorFlow do not support
layer-level resource allocation, we execute the entire model and
profile the inference and communication overhead of each layer,
instead of executing each layer separately.

We measure the execution time of each layer of VGG11 on CPU
and GPU respectively of a typical desktop-class platform and cal-
culate the CPU/GPU execution ratio of each layer. We fix the CPU
affinity to one core to avoid switch overhead among different CPU
cores. Fig. 3 shows the execution time ratio of CPU and GPU of
each layer. The results show that different layers incur significantly
unbalanced workloads on CPU and GPU. For example, as shown
in Fig. 3(a), the first fully-connected layer of VGG11 runs 25.3×
faster on GPU than CPU, while the second convolutional layer of

VGG11 is only 5.9× faster. This is because some DNN layers such as
convolutional and fully-connected layers contain massive parallel
computing operations that are better optimized for execution on
GPU than CPU. We also verify whether the results also hold for
other computing platforms. We perform a similar experiment using
NVIDIA AGX Xavier and AlexNet, which is another typical DNN
model. The results show a similar conclusion, demonstrating that
such a layer-wise diverse performance imbalance between CPU and
GPU exists in mainstream edge platforms and DNN models. Such
kind of imbalance may become a barrier for cross-processor
real-time DNN inference, because a task with high priority may
be blocked by its own execution on a weaker processor.

Based on the profiled latency of each layer on both CPU and GPU,
we then choose the more efficient processor as the one that the
layer would be allocated on. We note that we use this naive layer-
level allocation strategy to understand the compute characteristics
of different layers during model inference, while the state-of-the-
art layer-level CPU/GPU scheduling approaches are discussed in
Section 2 and compared as baselines in our experiments in Section
6. Fig. 4 shows the inference and communication overhead of each
layer. We observe that, compared with the model-level strategy in
Section 3.3, the CPU is now utilized for layer inference. However,
the workload between CPU and GPU is still highly unbalanced.
In the case of VGG11, the total execution time on CPU is 440.7 𝜇s,
which is only about 13% of that of GPU. In other words, the CPU
remains idle most of the time while the GPU is usually occupied.
More importantly, the communication between CPU and GPU costs
1234.5 𝜇s, which accounts for 25.35% of the total execution time.
The results indicate that allocating DNN models to CPU and
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GPU in a layer-level granularity may cause low resource
utilization and significant layer switching overhead.

3.4 Summary
Our key observation in this section is that, when multiple DNN
models are executed concurrently, allocating them to CPU/GPU
at either model- or layer-level granularity cannot utilize resources
efficiently. The model-level allocation strategy often causes severe
resource contention on the GPU while leaving the CPU idle. Al-
though the layer-level allocation improves resource utilization by
offloading some layers to the CPU, it may lead to frequent layer
switching and significant communication overhead. Moreover, of-
floading a single DNN layer from a powerful processor to a weaker
processor may lead to the blocking of DNN inference due to the
vast performance imbalance between processors. This kind of im-
balance is highly diverse among different DNN layers. These results
motivate us to find a new abstraction of model partition and sched-
uling to achieve better real-time concurrent DNN inference on
heterogeneous CPU-GPU platforms.

4 PROBLEM DEFINITION AND SYSTEM
OVERVIEW

4.1 Problem Definition
In this work, we consider the problem of supporting concurrent
real-time DNN inference on CPU-GPU heterogeneous platforms.
The key idea of BlastNet is to optimize the architecture of DNN
models in block-level granularity at design time, and support flexi-
ble and dynamic allocation of optimized model blocks on CPU-GPU
resources at runtime. Specifically, we define the original model for
each DL task 𝜏𝑖 as𝑀 = {𝐿0, 𝐿1, ..., 𝐿𝑚}, where 𝐿𝑚 denotes the𝑚𝑡ℎ

layer of the DNN model. We aim to construct a model with duo-
blocks (𝐵𝐶

𝑘
, 𝐵𝐺

𝑘
) (C refers to CPU, and G refers to GPU), which is

defined as 𝑀𝑑𝑢𝑜 = {(𝐵𝐶0 , 𝐵
𝐺
0 ), (𝐵

𝐶
1 , 𝐵

𝐺
1 ), ..., (𝐵

𝐶
𝑘
, 𝐵𝐺

𝑘
)}. Each duo-

block consists of a CPU block 𝐵𝐶
𝑘

and a GPU block 𝐵𝐺
𝑘
. Each

CPU/GPU block consists of multiple adjacent model layers highly
optimized for either GPU or CPU. In order to meet real-time require-
ments for each DNN inference, we aim to schedule the execution
of the GPU block 𝐵𝐺

𝑘
or the CPU block 𝐵𝐶

𝑘
of a duo-block based

on run-time resource usage and task urgency dynamically. For
example, the execution path can be 𝐵𝐺0 → 𝐵𝐶1 → 𝐵𝐶2 , ...,→ 𝐵𝐺

𝑘

or 𝐵𝐶0 → 𝐵𝐶1 → 𝐵𝐺2 , ...,→ 𝐵𝐺
𝑘
. Overall, we aim to maximize the

real-time performance of all DL inferences (i.e., minimize the total
deadline missing rates), while meeting a given accuracy bound on
each DNN model, i.e., 𝐴𝐶𝐶 (𝑀𝑒𝑥𝑒 ) > 𝐴𝑐𝑐_𝐵𝑜𝑢𝑛𝑑 . The above prob-
lem formulation can also be extended to achieve differentiated levels
of accuracy among different DL tasks by setting a user-specified
bound > 𝐴𝑐𝑐_𝐵𝑜𝑢𝑛𝑑𝑖 for the accuracy of each DL task.

4.2 System Architecture
Fig. 5 shows a bird-eye view of BlastNet. BlastNet consists of two
major components, i.e., duo-block generation and dynamic cross-
processor scheduling, collaborating to exploit duo-blocks for cross-
processor real-timeDNNmodel inference. A key novelty of BlastNet
is that each duo-block has a dual model structure, consisting of a
CPU block and a GPU block highly optimized for CPU and GPU,
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Figure 5: System architecture of BlastNet

respectively. Such design of duo-block enables dynamic alterna-
tive execution of DNN across processors, which provides more
scheduling flexibility for concurrent DNN execution.

BlastNet generates duo-blocks via offline block-level DNN par-
tition and optimization. We first partition the DNN models into
blocks by jointly considering the layer-level computing and commu-
nication characteristics as well as the operator fusion rules. Then,
each block is optimized for execution on CPU and GPU, construct-
ing a duo-block structure to support runtime dynamic scheduling.
A key challenge of duo-block generation is that optimizing two
versions of each block for GPU and CPU respectively may incur a
vast computation and storage overhead. We address this challenge
by optimizing only the subset of blocks that 1) account for a large
portion of the overall inference time, and 2) exhibit highly imbal-
anced inference performance on CPU and GPU, which presents
more opportunities for leveraging the heterogeneous processors.
Specifically, for each block to be optimized, we search for an opti-
mal model architecture via a two-stage Neural Architecture Search
(NAS)-based block optimization approach. First, we optimize the
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search space to meet the latency constraints based on the latency
profiling on the target processor (i.e., CPU or GPU). Second, we
aim to find the specialized network architecture in the optimized
search space via the Differentiable Architecture Search (DARTS)
algorithm [34].

At runtime, BlastNet adopts a novel dynamic cross-processor
scheduling mechanism that schedules each DNN block on CPU or
GPU based on its urgency and current system resources. Specif-
ically, in order to meet the real-time requirements of each DNN
inference task, BlastNet first orders the execution of each duo-block
based on its task urgency in a priority-driven duo-block queue. A
challenge in the design of BlastNet is how to maintain the bounded
accuracy since the CPU and GPU blocks of the same duo-block may
yield highly different levels of accuracy. BlastNet addresses this
problem by tracking the execution path of each model and account-
ing for the dynamic accuracy loss in a new primary-processor-first
execution mechanism. In this way, BlastNet can trade accuracy for
latency flexibly according to the utilization of each processor at
runtime. Lastly, BlastNet minimizes the cross-processor communi-
cation overhead by avoiding the data copying between blocks that
execute on the same processor.

5 DESIGN OF BLASTNET
5.1 Cross-processor Duo-block Generation
Fig. 6 shows the design of our cross-processor duo-block generation
process. In order to optimize the DNNmodel to different processors
for more efficient execution, we design a cross-processor block
generation algorithm, where we partition DNN models into blocks
and optimize them to enable more efficient execution on GPU or
CPU, respectively.

The main challenge here is how to achieve the fine-grained DNN
model partition while still allowing the opportunity for joint ar-
chitecture optimization between adjacent layers. To address this
challenge, we design a block-level model partition mechanism that
fuses DNN layers into blocks based on operator fusion rules and
layer characteristics, and then merges adjacent blocks that need

 Processor
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Figure 7: Operator fusion and its benefit (evaluated under
torchscript on the desktop platform with NVIDIA RTX 2060
GPU). 𝑇𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟_𝑛𝑎𝑚𝑒 denotes the execution time of the oper-
ator. 𝑇𝑠𝑢𝑚 denotes the sum of 𝑇𝑐𝑜𝑛𝑣2𝑑 , 𝑇𝑟𝑒𝑙𝑢 or 𝑇𝑙𝑖𝑛𝑒𝑎𝑟 , 𝑇𝑑𝑟𝑜𝑝𝑜𝑢𝑡 .
𝑇𝑓 𝑢𝑠𝑒𝑑_𝑠𝑢𝑚 denotes the execution time of fused operators.

to be optimized. However, each duo-block contains two optimized
versions of the same block for both CPU and GPU, which may incur
a vast computation and storage overhead. To address this issue,
we carefully identify a subset of blocks for optimization based on
latency profiling on the target platform. Next, for each DNN block
that needs to be optimized, we search for a more efficient block
architecture for CPU/GPU execution, which executes faster on the
target processor, while having a similar accuracy. A common heuris-
tic to reduce the inference time of DNN is reducing the number of
computation operations via model compression techniques such as
filter pruning or quantization. However, as shown in previous work
[50], only reducing computation operations or memory accesses do
not always lead to lower inference latency. It is critical to consider
the computing characteristic of DNN operators on the target plat-
form. Hence, we propose to customize processor-friendly candidate
blocks for the target processor, and then search for efficient blocks
via NAS techniques.

5.1.1 Block-level Model Partition. We first fuse DNN layers into
blocks based on the general operator fusion rules. Current DL frame-
work such as PyTorch and TensorFlow optimizes the DNN model
inference by optimization techniques such as operator fusion, which
combines multiple DNN operators into a single kernel instead of
storing the intermediate results in on-board memory. Operator
fusion eliminates unnecessary transmission of intermediate com-
puting results, and thus reduces the overhead of launch and synchro-
nization. Figure 7 demonstrates two examples of operator fusion on
two operator nodes and the benefit. The operator fusion rule we con-
sidered in this work is the general platform-independent graph opti-
mization in TVM [4] (tvm.relay.transform.FuseOps (fuse_opt_level)),
which is applicable for cross-processor execution and widely used
in many DL frameworks. We fuse two blocks when transmitting a
block’s results between processors takes a longer time than execut-
ing it on the faster processor.

As we discussed in Section 3.3, layers in the same DNN model
show different execution performances on different processors. We
first measure the inference time of each block on all processors in
the target edge platform (i.e., CPU or GPU) to determine the primary
and the secondary processors for each block. The processor with the
fastest DNN block execution refers to its primary processor, while
the slower refers to its secondary processor. We aim to optimize the
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block execution on its secondary processor. However, optimizing for
each block may cause a vast computation overhead for architecture
search and also lead to high storage overhead for storing each
optimized block. Hence, we choose to optimize the blocks that
have high computational difference (e.g. 𝐶𝐷 > 𝜀) as well as high
workload proportion (e.g.𝑊𝑃 > 1/𝑏𝑙𝑜𝑐𝑘_𝑛𝑢𝑚) to reduce those
overheads. The thresholds for the high computational difference
could be adjusted according to the user requirements. A lower
computational difference threshold means that more blocks will be
optimized, which will also result in heavy NAS workloads. In our
experiments, we set it to 1 or 10 according to model types. Based
on the profiling data, we calculate the computational difference
(CD) of each block and the workload proportion (WP) of each block
based on Eq. 1.

𝐶𝐷 =
𝑇 𝑠𝑒𝑐 (𝐵𝑘 )
𝑇𝑝𝑟𝑖 (𝐵𝑘 )

, 𝑊 𝑃 =
𝑇𝑝𝑟𝑖 (𝐵𝑘 )∑𝑘𝑚𝑎𝑥

𝑘=0 𝑇𝑝𝑟𝑖 (𝐵𝑘 )
(1)

𝐵𝑘 refers to the 𝑘𝑡ℎ block, and 𝑇𝑝𝑟𝑖 / 𝑇 𝑠𝑒𝑐 is the block execution
time on the primary/secondary processor. This block selection
mechanism avoids possible massive data transmission between
CPU and GPU. If the feature maps of one DNN model are huge, it is
not suitable for cross-processor inference in principle, and BlastNet
will not partition it into blocks. However, BlastNet can handle DL
task sets with different characteristics, and models that have large
feature maps can still benefit from the optimization of other models
with duo-blocks or the scheduling mechanism.

5.1.2 NAS-based Block Optimization. To optimize the inefficient
DNN block for different processors, we first customize a pool of
candidate blocks for each block to be optimized. We only consider
convolutional and fully-connected layers since they account for the
most execution time of the model inference according to previous
works [12, 38]. For candidate blocks of a convolutional block, we
choose the most CPU-friendly operators for optimization on CPU,
i.e., depthwise separable convolutional layer [18]. As shown in
Fig. 8, to maintain the same input size and output size as the original
block, each candidate block has a head module and a tail module.
The head/tail module is a lightweight convolutional layer with
1 × 1 kernel size, and has the same channel size as the prior/next
block. Different candidate blocks have different layer numbers and
channel sizes. Typically, we choose up to 10 depthwise separable
convolutional layers and vary the channel size from 32 to 512 with
exponential growth for a large search space. For the convolutional
layer to be optimized to GPU, we adopt denser convolutional layers,
which are more friendly for inference on GPU. For candidate blocks
of fully-connected blocks, we choose the fully-connected layer with
a smaller/larger channel size and stack them for optimization.

We then search for the optimal block that minimizes the accuracy
loss while having less inference time on the secondary processor,
which is formulated in Eq.2. The optimized block 𝐵𝑛𝑒𝑤

𝑘
can be a

CPU block 𝐵𝐶
𝑘
if its secondary processor is CPU or a GPU block 𝐵𝐺

𝑘
if its secondary processor is GPU.

∀ 𝑘 min L(𝐵𝑛𝑒𝑤
𝑘

,𝑊 ∗ )
𝑠.𝑡 . 𝑇 𝑠𝑒𝑐 (𝐵𝑜𝑙𝑑

𝑘
) > 𝑇 𝑠𝑒𝑐 (𝐵𝑛𝑒𝑤

𝑘
) (2)

L(·) is the loss function of the DNN model with 𝑘𝑡ℎ optimized
block and the original model weight𝑊 ∗. To solve the problem for-
mulated in Eq.2, we first profile the inference time of each candidate
block on the target processor and find the blocks that satisfy the
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Figure 8: Example for candidate blocks of a convolutional
layer on CPU

latency constraint, and then search for the block that minimizes
the accuracy loss. The search algorithm is based on the Differen-
tiable Architecture Search (DARTS) algorithm [34], which is one of
the state-of-the-art one-shot NAS algorithms. The DARTS-based
technique allows efficient architecture search by the gradient de-
scent, which is orders of magnitude faster than state-of-the-art
non-differentiable techniques. In order to ensure the compatibility
of the optimized block with the original model, we fix the model
weights of other blocks when calculating the architecture gradient
and weight gradient in the DARTS-based search procedure and
only retrain the weight of the searched optimal block.

Note that we optimize each individual block instead of optimizing
all blocks at one time. Because searching all optimal blocks at
one time can only guarantee the accuracy of the model when all
optimized blocks are executed. However, as we will introduce in the
next section, the DNN model may execute its 𝑘𝑡ℎ block either 𝐵𝐺

𝑘

on the GPU or 𝐵𝐶
𝑘
on the CPU. Hence, the total execution sequence

for an instance of DNN inference could be 𝐵𝐶0 → 𝐵𝐺1 , ...,→ 𝐵𝐶
𝑘
,

which not always contains all the optimized blocks.

5.2 Dynamic Cross-Processor Scheduling
Current DL frameworks such as PyTorch and TensorFlow can only
allocate models to a single processor before execution. However,
reallocating the whole model incurs significant overhead during
model loading and initialization. We design a dynamic real-time
cross-processor DNN model scheduling mechanism for concurrent
DNNs execution. Fig. 9 illustrates the design. First, the scheduler pri-
oritizes each duo-block based on its task urgency. Then, a primary-
processor-first execution mechanism decides the execution proces-
sor for each duo-block based on the status of the processors. Our
primary-processor-first execution mechanism also considers the
accuracy loss caused by alternative execution of CPU/GPU blocks.
Finally, we use a multi-worker thread executor with a duo-block
memory manager to reduce the communication and memory copy
overhead.

Task Model for DNN Inference. Each DNN model inference here
consists of a sequence of block execution. Therefore, each DNN
inference task 𝜏𝑖 (𝑖 ∈ {1, 2, ..., 𝑛}) comprises 𝑘 sequential sub-tasks
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Figure 9: Procedure for cross-processor scheduling, worker
thread 1.1 represents the worker thread for DNN model 1 on
the GPU processor.

𝐵0 → 𝐵1, ...,→ 𝐵𝑘 , where 𝑘 denotes the total number of blocks for
DNN inference task 𝜏𝑖 . Since each duo-block has two structures, the
𝑘𝑡ℎ block can be executed using either 𝐵𝐺

𝑘
on the GPU or 𝐵𝐶

𝑘
on the

CPU. Real-world deep learning applications usually process input
data periodically and require the results in time. For example, the DL
task for traffic light detection is initiated at the same frequency as
the camera’s sampling (e.g., 10 𝑓 𝑝𝑠). Therefore, each DNN inference
task 𝜏𝑖 is a task with the period of 𝑇𝑖 and a relative deadline 𝐷𝑖 ,
where 𝐷𝑖 can equal to 𝑇𝑖 . Each task 𝜏𝑖 can be defined as an array,
i.e., ({𝐵𝐺/𝐶

𝑘
}, 𝐷𝑖 ,𝑇𝑖 ).

DNN Duo-Block Scheduling. We adopt a priority-driven duo-
block queue to prioritize the execution order of each duo-block.
Specifically, when a DNN inference task boots, our job generator
periodically generates the first sub-job (i.e., DNN duo-block 𝐵0) for
the task according to its period. We prioritize each duo-block ac-
cording to the expected absolute completion time (i.e., the deadline)
of its model inference: the earlier deadline, the higher priority. This
design can help blocks from the most urgent tasks to be executed in
time. The duo-block queue here is implemented as a priority queue
to support priority-driven scheduling. The job generator pushes a
new job to the duo-block queue only when the prior job is finished,
or the job is discarded. This mechanism can avoid persistent job
loss.

We design a primary-processor-first execution mechanism for
duo-block execution to execute as many blocks on the primary
processor as possible and manage the accuracy loss introduced by
the optimized block. Fig. 10 shows the flow chart of the execution
mechanism.We fetch the duo-block from the head of the queue once
there are spare processors. If its primary processor is not occupied
by other blocks, we execute the block for the primary processor
in the duo-block. Note that a block for the primary processor is
either a CPU block or a GPU block. Otherwise, we estimate the
highest possible accuracy of executing the block for its secondary
processor based on the prestored accuracy information for each
execution path.We only execute this blockwhen the accuracymeets
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Fetch Duo-block

If satisfy accuracy  
bound?

No

No

Execute block  
for primary processor

Push back  
to the queue

Yes

Yes Execute block  
for secondary processor
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Figure 10: Primary-processor-first execution mechanism

a user-defined threshold, i.e., the minimum acceptable accuracy.
Otherwise, it will be pushed back to the queue.

We also design a multi-worker thread executor to implement our
DNN block scheduling approach. The processor-specific executor
(i.e., GPU/CPU executor) dispatches the block to its corresponding
DNN model worker thread for execution. Each worker thread has
a fixed affinity for the CPU or GPU. If the worker thread needs to
execute the first block of the DNN model (i.e., 𝐵0), it will perform
preprocessing for each DNN inference task, such as data fetching
and image resizing for image classification tasks. Post-processing
such as rendering and encoding will be performed after the exe-
cution of the last block. When initializing a DNN model worker
thread, the worker thread preloads the DNNmodel architecture and
weights into CPU/GPU memories according to its processor affinity.
Without this mechanism, the execution needs to reload and initial-
ize the DNN block every time and incurs extensive initialization and
memory copy overheads. Our multi-worker thread executor also
includes a duo-block memory manager to control the data transmis-
sion among multiple threads. Duo-block memory manager copies
the data between blocks that execute on the different processors
and only passes the pointers between blocks that execute on the
same processors, which minimizes the data transmission between
executed blocks.

6 EVALUATION
6.1 Implementation and Experiment Setup
We use a desktop-class (Intel i9 CPU + NVIDIA RTX 2080 GPU),
and two edge platforms (NVIDIA AGX Xavier and NVIDIA Jetson
TX2) with both CPU and GPU processors for evaluations. The
hardware configurations are shown in Table 1. The details of the
DNN inference tasks used in our experiments are shown in Table 2.
We use PyTorch as the DL framework for model generation, NNI
[45] as the NAS framework and LibTorch (C++ frontend of PyTorch)
with CUDA library for DNN inference. We note that BlastNet can
be ported to other DL frameworks like TensorFlow, MXNet, and
MindSpore by converting the models to ONNX format for the C++
frontend.
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Table 1: Platforms used in evaluation experiments.

Platform GPU CPU Memory Storage
NVIDIA AGX
Xavier

512-core
Volta

8-core ARMv8.2 16GB 32GB

NVIDIA Jet-
son TX2

256-core
Pascal

2-core ARM Den-
ver + 4-core ARM
A57

8GB 32GB

Desktop RTX2080 8-core Intel i9-
9900K

32GB 5TB

Table 2: DNN inference tasks used in evaluation experiments.

DNN Inference Task
Type

Dataset DNN Model

Image Classification CIFAR10 [24] MobileNet[17], VGG11, AlexNet
Sign Recognition GTSRB [48] ResNet18
Object Detection COCO [32] YOLO [44]

Remote server implementationTarget device implementation BlastNet profiler

BlastNet runtime engine

Wi-Fi socket Wi-Fi socket

LibTorch runtime

C++ multithreading

Python API

Block optimization

NNI runtime

PyTorch NN

LibTorch NN

Block partition
Python API
PyTorch NN

PyTorch NN

Figure 11: BlastNet Software Implementation

Figure 11 shows the system implementation of BlastNet, which
includes a remote server for block optimization and the target de-
vice for on-device execution, which communicates via a standard
socket. Specifically, the server first transmits the model files of can-
didate blocks to the client. After receiving the model files, the client
profiles the candidate block on the target processor and then re-
turns the profiling data to the server. In this way, while the profiling
is performed on the target edge platform, more powerful servers
can be utilized to efficiently conduct DNN block optimization. We
convert the user-defined PyTorch model to the NNI model with
candidate blocks, using an NNI-Pytorch model converter imple-
mented by ourselves. It is also used to convert the model back to
PyTorch when the NAS-based optimization is finished. The models
are then cast to a LibTorch format to work with C++ code for DNN
inference on the edge platforms.

In the implementation of the dynamic cross-processor scheduler,
the inference of each model and the scheduler itself are executed
in separate individual threads. The CPU affinity is fixed for each
thread, and the edge platform is set to its maximum power mode. To
support the block-level inference of each DNN model, we first mod-
ify the forward function of the model under the PyTorch framework,
which supports flexible start and end points of model inference.
Specifically, the start and end points of each block are stored offline,
which can then be invoked by the scheduler to execute any given
set of blocks.

6.2 End-to-end System Evaluation
We implement BlastNet and evaluate the end-to-end system perfor-
mance using an autonomous driving testbed. As shown in Fig. 12 (a),

we use an F1/10 autonomous vehicle [5] equipping a LiDAR and an
edge computing platform, i.e., NVIDIA TX2 with Orbitty Carrier
board. The vehicle can detect the side of the road and follow along
the lane fence with a dimension of 5𝑚 × 6𝑚 while recognizing the
traffic signs at the same time. There are four real-time DL tasks
for traffic sign recognition and a lane detection task running on
this platform. To simulate realistic outdoor traffic conditions, we
preload the GTSRB dataset [48] on the SD card of the vehicle. It
contains data of 43 signs captured by visual sensors. Four different
ResNet18 models are run on the vehicle to recognize traffic signs.
This is consistent with the common practice of autonomous driv-
ing systems, where multiple models are used to process the data
of sensors installed at different positions of the vehicle [23]. We
choose ResNet18 for evaluation because it is widely used as the
backbone for most popular neural networks, such as RetinaNet [31]
and DetNet [30].

We test various scenarios by running the F1/10 autonomous
vehicle at different speeds, resulting in different levels of resource
utilization. Specifically, the vehicle may remain static, runs at 1𝑚/𝑠 ,
or at 2𝑚/𝑠 . We run the experiment for 300 seconds for each setting
which contains about 1500 jobs. We use the tegrastats toolkit [41]
to measure the CPU utilization without DNN workload with a sam-
pling rate of 1000 fps. Fig. 13(a) shows the average CPU utilization
for a sliding time window of 100ms. It can be seen that the CPU
utilization exhibits significant fluctuation as sensor data is being
processed. Moreover, when the vehicle moves, the motion control
induces a substantial CPU load.

We evaluate the performance of BlastNet by comparing it against
the baseline 𝐿𝑎𝑦𝑒𝑟_𝑆𝑐ℎ𝑒𝑑 . 𝐿𝑎𝑦𝑒𝑟_𝑆𝑐ℎ𝑒𝑑 schedules the DNN model
at the layer level, in which each sub-job refers to a single DNN
layer. We use the deadline missing rate (i.e., Eq. 3) to quantify how
well the real-time requirement is met. Deadline missing rate is a
widely-used metric for real-time applications [1, 33]. With the joint
consideration of car speed and the field of view of car cameras, we
set the deadline for each task as 400ms, which is enough to detect an
object in time. Fig. 13(b) shows the deadline missing rate of the task
that yields the best performance for the baseline 𝐿𝑎𝑦𝑒𝑟_𝑆𝑐ℎ𝑒𝑑) over
three speeds. The results show that BlastNet consistently maintains
a deadline missing rate below 5% for all the speed levels (in which
the highest missing rate 4.25% was given by the high-speed 2𝑚/𝑠).
In contrast, 𝐿𝑎𝑦𝑒𝑟_𝑆𝑐ℎ𝑒𝑑 causes massive deadline misses (18.96%
for static, 19.97% for high-speed).

We further analyze the advantages of BlastNet by calculating
the average CPU/GPU execution time, waiting time, and commu-
nication time per inference job. The waiting time here refers to
the idle time from job release to completion, which may be caused
by resource contention of other models. Fig. 13(c) shows the av-
erage latency for each delay category within a duration of 100𝑠 .
We observe that BlastNet effectively reduces the GPU execution
time (74.08ms for BlastNet and 101.78 ms for 𝐿𝑎𝑦𝑒𝑟_𝑆𝑐ℎ𝑒𝑑). This is
because BlastNet executes more DNN workload efficiently on CPU
(30.74ms for BlastNet and 244.84 ms for 𝐿𝑎𝑦𝑒𝑟_𝑆𝑐ℎ𝑒𝑑). In addition,
BlastNet also reduces the waiting time due to the effectiveness of
cross-processor scheduling.

In conclusion, the evaluation in this section shows that Blast-
Net maintains consistent low deadline missing rates and is robust

99



SenSys ’22, November 6–9, 2022, Boston, MA, USA Neiwen Ling, Xuan Huang, Zhihe Zhao, Nan Guan, Zhenyu Yan and Guoliang Xing

(a) F1/10 Vehicle (b) Testbed setup

Figure 12: F1/10 autonomous driving testbed.
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Figure 13: Performance of BlastNet under various driving
settings.

to diverse conditions including different resource availability and
driving speeds.

6.3 Performance of Cross-processor Duo-block
Generation

We now evaluate the performance of our block-level DNN opti-
mization on different platforms. To evaluate the effectiveness of
the proposed block-level DNN optimization approach in BlastNet,
we deploy a Similarity-based NAS as the baseline, which searches
the optimized architecture based on the output difference between
the optimized block and the original block. This approach is also
adopted by the DFN [27] for searching efficient functions to replace
the entire DNNmodel and LegoDNN [12] for retraining scaled DNN
layers. We implement this baseline by modifying the loss function
used in the neural architecture search. We use the Euclidean Dis-
tance to describe the similarity between the original block and the
optimized block. We also use the same loss function for retraining
the weights of optimized blocks.

We evaluate the accuracy of all the possible execution paths in-
stead of the model with all the optimized blocks. This is because the
DNN model may execute its block either on its primary processor
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(a) VGG11 (Desktop with 2080)
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(b) VGG11 (Xavier)
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Figure 14: Model accuracy with all possible inference paths
with the optimized blocks.

or its secondary processor, which leads to a set of inference paths.
Each inference path corresponds to an accuracy. Fig. 14 shows the
distribution of the accuracy across all inference paths. There are
nine accuracy bins in the x-axis, and each bin stands for a range of
10%, e.g. 30% means the accuracy range from 30% to 40%. We cal-
culate the percentage of inference paths falling into each accuracy
bin. Results show that BlastNet performs better than the Similarity-
based NAS approach in terms of the accuracy distribution for all
the inference paths. As shown in Fig. 14(a), for adapting VGG11
on a typical desktop-class platform, 81.25% of the inference paths
are with the accuracies of more than 70%. While Similarity-based
NAS only achieves 50% inference paths with the accuracies of more
than 70%. Most of the inference paths of BlastNet are distributed
in the high precision range, which guarantees high precision for
most inferences. Fig. 14 also shows the accuracy distribution un-
der other settings of different models and platforms. Compared
with Similarity-based NAS, our approach can achieve less accuracy
loss for all the paths of the optimized blocks and thus enable more
inference with high accuracy.

6.4 Overall Performance of BlastNet
To reflect the performance gain of block-level DNN optimization
and scheduling, we compare our approach with four methods,
including𝑀𝑜𝑛𝑜_𝑆𝑐ℎ𝑒𝑑 , 𝐿𝑎𝑦𝑒𝑟_𝑆𝑐ℎ𝑒𝑑 ,𝑀𝑜𝑛𝑜_𝐴𝑑𝑎𝑝𝑡 , and BlastNet-
w/o-PF. Both baseline𝑀𝑜𝑛𝑜_𝑆𝑐ℎ𝑒𝑑 and baseline 𝐿𝑎𝑦𝑒𝑟_𝑆𝑐ℎ𝑒𝑑 adopt
the same priority-based queue (i.e., Earliest Deadline First) as Blast-
Net to prioritize the issuedDNN inference task. Baseline𝑀𝑜𝑛𝑜_𝑆𝑐ℎ𝑒𝑑
schedules the DNN models by monolithically allocating them to
heterogeneous resources. Specifically, it dispatches the entire DNN
model to a processor once there exists free resource on that proces-
sor. Baseline 𝐿𝑎𝑦𝑒𝑟_𝑆𝑐ℎ𝑒𝑑 schedules the DNN model at the layer
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level, in which each sub-job refers to a single DNN layer. This base-
line is similar to several existing works (e.g., DART [55]) that sched-
ule DNN models at the layer level, as we introduced in Section 2. To
evaluate the performance of our block-level DNN scheduling, we
design a baseline𝑀𝑜𝑛𝑜_𝐴𝑑𝑎𝑝𝑡 that employs the whole model with
all the optimized blocks for inference. Baseline𝑀𝑜𝑛𝑜_𝐴𝑑𝑎𝑝𝑡 differs
from BlastNet only in DNN scheduling, i.e., it adopts monolithic
scheduling (same as𝑀𝑜𝑛𝑜_𝑆𝑐ℎ𝑒𝑑) to execute the models. To evalu-
ate the effectiveness of our primary-first execution mechanism, we
design a baseline BlastNet-w/o-PF, which differs from BlastNet only
in that it has no primary-first execution mechanism. We set 70% as
the accuracy bound in our primary-first execution mechanism.

We use deadline missing rate to quantify how well the task real-
time requirement (i.e., task deadline) is met under our method and
other four baselines. The deadline missing rate as defined in Eq. 3
denotes the percentage of missed jobs among all inference jobs of
a DNN inference task,

𝑚𝑖𝑠𝑠𝑖𝑛𝑔_𝑟𝑎𝑡𝑒 =
𝑁𝑜𝑣𝑒𝑟𝑡𝑖𝑚𝑒_𝑗𝑜𝑏 + 𝑁 𝑠𝑘𝑖𝑝𝑝𝑒𝑑_𝑗𝑜𝑏

𝑁 𝑡𝑜𝑡𝑎𝑙_𝑟𝑒𝑙𝑒𝑎𝑠𝑒𝑑_𝑗𝑜𝑏 , (3)

where 𝑁𝑜𝑣𝑒𝑟𝑡𝑖𝑚𝑒_𝑗𝑜𝑏 denotes the number of jobs that exceed
their absolute deadlines, 𝑁 𝑠𝑘𝑖𝑝𝑝𝑒𝑑_𝑗𝑜𝑏 denotes the number of the
skipped job due to the deadline missing of the previous job, and
𝑁 𝑡𝑜𝑡𝑎𝑙_𝑟𝑒𝑙𝑒𝑎𝑠𝑒𝑑_𝑗𝑜𝑏 denotes the number of total released jobs. Each
approach is evaluated for 120000 ms under the same configuration.

To show the accuracy performance of BlastNet and the other
baselines, we adopt the same histogram setting in Section 6.3 as the
metric. We show the probability for each accuracy range, which
is calculated based on the accuracy of all DNN inferences, i.e.,
all the DNN inference instances for one task set. To quantify the
accuracy performance, we also calculate the average accuracy loss
by comparing the average inference accuracy and the accuracy of
the original DNN model.

6.4.1 Impact of different DNNworkloads. Wedemonstrate the effec-
tiveness of BlastNet under different workloads induced by various
settings of task numbers. Specifically, we consider low and high
workloads for a task set with four and eight typical DNN inference
tasks respectively. For unifying the workload of each DNN infer-
ence task, we adopt the same DNN model (i.e., VGG11) for each
task. The deadline for each task is set to be four times the measured
average inference time of a single DNN inference task. In order to
show different real-time requirements, we randomly increase or
decrease the deadline for each task by 2%.

As shown in Fig. 15(a), with light workload, BlastNet reduces
the deadline missing rate of task VGG11-4 by 44.37% compared
to𝑀𝑜𝑛𝑜_𝑆𝑐ℎ𝑒𝑑 , 6.34% compared to 𝐿𝑎𝑦𝑒𝑟_𝑆𝑐ℎ𝑒𝑑 , and 52.11% com-
pared to𝑀𝑜𝑛𝑜_𝐴𝑑𝑎𝑝𝑡 with no accuracy loss. As shown in Fig. 15(b),
BlastNet achievesmore inferenceswith high accuracy than BlastNet-
w/o-PF. Specifically, compared with BlastNet-w/o-PF, BlastNet can
sacrifice 14.39% less accuracy loss at average, while achieving com-
parable performance of deadline missing rate. For heavy work-
load as shown in Fig. 15(c), BlastNet still can achieve 10.63% aver-
age deadline missing rate with minor accuracy loss (𝑚𝑎𝑥𝑖𝑚𝑢𝑚 −
𝑎𝑣𝑒𝑟𝑎𝑔𝑒 = 1.63%), while 𝐿𝑎𝑦𝑒𝑟_𝑆𝑐ℎ𝑒𝑑 can only achieve 45.70%. Al-
though 𝑀𝑜𝑛𝑜_𝐴𝑑𝑎𝑝𝑡 has a similar missing rate to ours (11.78%),
our method avoids 32.51% average accuracy loss compared with
𝑀𝑜𝑛𝑜_𝐴𝑑𝑎𝑝𝑡 . BlastNet achieves 12.14% reduction in accuracy loss
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Minimum Average 1/4 Value Maximum
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Figure 15: Real-time/Accuracy performance of BlastNet un-
der different DNN workloads.

compared with BlastNet-w/o-PF with comparable deadline missing
rate (10.63%). BlastNet performs better than most other methods
under both light and heavy workloads.

6.4.2 Impact of background load. We evaluate BlastNet under var-
ious GPU and CPU background loads to show the robustness of
our system. We execute a YOLO model on the GPU or a MobileNet
model on the CPU in a standalone thread as the GPU or CPU back-
ground load, respectively. We set the affinity of the working thread
for executing our task set and the thread for background load to
the same CPU cores. We use four DNN inference tasks with two
types of typical DNN models. As a comparison, we also show the
deadline missing rate and accuracy distribution of those four DNN
inference tasks without background load in Fig. 16(a) and Fig. 16(b).

As shown in Fig. 16(c), under interference of GPU background
workload, BlastNet can reduce the deadline missing rate by 14.62%
and 11.31% compared with 𝐿𝑎𝑦𝑒𝑟_𝑆𝑐ℎ𝑒𝑑 and𝑀𝑜𝑛𝑜_𝑆𝑐ℎ𝑒𝑑 with mi-
nor accuracy loss (7.31%). For background load interference on
CPU, Fig. 16(e) shows that BlastNet still can achieve 15.99% aver-
age deadline missing rate with 7.31% average accuracy loss, while
𝐿𝑎𝑦𝑒𝑟_𝑆𝑐ℎ𝑒𝑑 and𝑀𝑜𝑛𝑜_𝑆𝑐ℎ𝑒𝑑 only achieve 35.54% and 27.65% re-
spectively. Comparing the results in Fig. 16(b) and Fig. 16(d),16(f),
we also observe a drop of probability for high accuracy. This is
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Figure 16: Real-time/Accuracy performance of BlastNet un-
der interference.

because our scheduler tends to offload DNN workloads to the sec-
ondary processor when the primary processor has a heavy work-
load to guarantee the real-time performance of DNN model infer-
ence. This result shows that BlastNet achieves better performance
over baselines under both GPU background load interference and
CPU background load interference.

6.4.3 Different edge platforms. In this section, we assess the gen-
erality of BlastNet for various edge platforms. The experiments in
previous sections are conducted on a desktop-class platform. In
this section, we evaluate BlastNet on low-power edge devices. As
shown in Fig. 17(a),17(b) and Fig. 17(c),17(d), BlastNet can reduce
the deadline missing rate effectively on both edge platforms with
minor accuracy loss. Specifically, BlastNet suffers a minor accu-
racy loss 1.54% on Xavier, while reducing deadline missing rate by
20.57%, 15.45%, 15.04% on average, compared with 𝐿𝑎𝑦𝑒𝑟_𝑆𝑐ℎ𝑒𝑑 ,
𝑀𝑜𝑛𝑜_𝐴𝑑𝑎𝑝𝑡 and 𝑀𝑜𝑛𝑜_𝑆𝑐ℎ𝑒𝑑 algorithms respectively. On TX2,
BlastNet achieves 1.63% reduction in accuracy loss compared with
the baseline (BlastNet-w/o-PF ) while achieving comparable average
deadline missing rate (17.13% for BlastNet, 20.51% for BlastNet-w/o-
PF ). This result shows that BlastNet can be effectively applied on
different edge platforms.
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Figure 17: Performance comparison of BlastNet under differ-
ent edge platforms.

6.4.4 CPU/GPU utilization. We trace the execution of VGG11 us-
ing BlastNet and the baseline to evaluate the CPU/GPU utilization
and communication overhead on an NVIDIA Jetson TX2. We clas-
sify the operations into three categories, i.e., inference, communi-
cation, and idle. Fig. 18 shows the timelines of the operations in a
time duration of 2s and the distribution of time. Communication
time describes the time of copying input data between different pro-
cessors for each block/layer. Note that this copy only occurs when
the current and subsequent blocks/layers are executed on different
processors. We also calculate the proportion of the total time for
each part. We observe that BlastNet uses 90.95% of GPU time for
inference while only 70.20% is used by 𝐿𝑎𝑦𝑒𝑟_𝑆𝑐ℎ𝑒𝑑 . We observe
that the communication overhead caused by 𝐿𝑎𝑦𝑒𝑟_𝑆𝑐ℎ𝑒𝑑 is almost
the same as BlastNet. This is because BlastNet executes more jobs
within the same time and leads to more frequent data transmission.
In addition, we can find from the timeline that 𝐿𝑎𝑦𝑒𝑟_𝑆𝑐ℎ𝑒𝑑 incurs
a longer communication time for single data transmission. The
results show that BlastNet can effectively and efficiently reduce the
block time caused by unbalanced inference performance between
different processors, thus improving overall CPU/GPU utilization
and lowering the deadline missing rate.

6.5 System Overhead

Table 3: CPU Overhead of Block-level DNN Scheduling

Task Set Size Desktop Xavier TX2
2 DNN inference tasks 1.21% 1.61% 2.86%
4 DNN inference tasks 1.52% 1.38% 3.97%
6 DNN inference tasks 2.08 % 1.71% 3.20%

The major system overhead of BlastNet is caused by the dynamic
cross-processor DNN scheduler since it needs to run online. The
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(a) BlastNet on GPU (b) BlastNet on CPU

(c) Layer-Sched on GPU (d) Layer-Sched on CPU

Figure 18: Execution timeline for inference, communication, and idle.

cross-processor block generation may also incur considerable over-
head. However, it is offline and can also be offloaded to the cloud.
Therefore, we focus on analyzing the CPU overhead of our block-
level DNN scheduler in this section. We measure the overhead
by setting the CPU affinity of our scheduler/optimizer to a single
CPU core. Table 3 shows the incurred CPU overhead (measured as
the percentage of CPU usage) by our scheduler. The majority of
scheduling overhead is due to the control of DNN block execution.
As shown in Table 3, when the number of DNN inference tasks
increases, CPU overhead remains almost the same. Especially, due
to the different processing capabilities of CPU cores as shown in
Section 6.1, CPU overhead is different among platforms.

7 DISCUSSION

Scalability to New Platforms. BlastNet can be extended to sup-
port a wider range of heterogeneous architectures such as CPU-
NPU [16] and GPU-FPGA [14]. While our basic idea of optimizing
processor-specific blocks is still valid, the NAS technique adopted
in BlastNet may lead to a vast migration overhead for a new device.
In such a case, BlastNet may integrate few-shot transfer learning
methods [52] with the cross-processor block generation to acceler-
ate the adaptation procedure to a new target hardware platform.
Specifically, we will design a latency predictor to predict the execu-
tion time of a DNN architecture, which speeds up the convergence
of neural architecture search. This predictor can quickly adapt to a
new platform based on the few-shot learning technique.

Uncertain Workload. We evaluate BlastNet under periodic DNN
model inference to simulate real-time applications that require sen-
sors to be sampled at a fixed frequency. Besides periodic DNNmodel
inference, BlastNet can also accommodate uncertain dynamic work-
loads, e.g., tasks arriving over time such as voice control triggered
by keyword spotting [3]. The dynamic model scheduling mecha-
nism adopted in BlastNet can handle such uncertain workloads via
the priority-driven job queues. For instance, the priorities of oppor-
tunistic tasks may be assigned based on their absolute deadlines.

Application Scenarios. Compared with model-level scheduling,
the block-level scheduling approach will enable BlastNet to perform
better for the mixed tasksets with big and small models. This is
because, under model-level execution, the execution of a big model
may block the execution of a small model, which can be relieved
by the more fine-grained block-level execution. Moreover, BlastNet
is also effective for the DL tasks that perform well on a single
processor (e.g., all GPU-friendly models), since the NAS-based block
optimization in BlastNet can adapt the original model to a new
processor efficiently in a fine granularity.

8 CONCLUSION
In this paper, we present a new system named BlastNet, which
supports concurrent real-time DNN model inference on CPU-GPU
heterogeneous edge platforms through block-level model optimiza-
tion and scheduling. Based on duo-block - a newmodel optimization
and scheduling abstraction, BlastNet integrates novel techniques at
both design time and runtime to optimize the architecture of DNN
models in block-level granularity and dynamically schedule con-
current block inference on CPU-GPU heterogeneous resources. We
implement BlastNet on three mainstream heterogeneous CPU-GPU
edge platforms and an indoor autonomous driving testbed. Our
extensive experiments show that BlastNet can enable concurrent
real-time DNN model inference to achieve satisfactory real-time
performance. Moreover, compared to several state-of-the-art base-
lines with fine-/coarse-grained scheduling policies, BlastNet can
reduce deadline missing rate up to 35.07% while only sacrificing
negligible DNN model accuracy. Therefore, BlastNet can support
a wide range of emerging data-intensive and time-critical applica-
tions running on edge platforms.
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