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ABSTRACT
Recent years have witnessed the emergence of a new class of coop-
erative edge systems in which a large number of edge nodes can col-
laborate through local peer-to-peer connectivity. In this paper, we
propose CoEdge, a novel cooperative edge system that can support
concurrent data/compute-intensive deep learning (DL) models for
distributed real-time applications such as city-scale traffic monitor-
ing and autonomous driving. First, CoEdge includes a hierarchical
DL task scheduling framework that dispatches DL tasks to edge
nodes based on their computational profiles, communication over-
head, and real-time requirements. Second, CoEdge can dramatically
increase the execution efficiency of DL models by batching sensor
data and aggregating the inferences of the same model. Finally, we
propose a new edge containerization approach that enables an edge
node to execute concurrent DL tasks by partitioning the CPU and
GPU workloads into different containers. We extensively evaluate
CoEdge on a self-deployed smart lamppost testbed on a university
campus. Our results show that CoEdge can achieve up to 82.32%
reduction on deadline missing rate compared to baselines.

CCS CONCEPTS
• Computer systems organization→ Sensor networks; • Com-
puting methodologies → Self-organization; • Software and
its engineering→ Software design engineering.
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1 INTRODUCTION
Edge computing has emerged as a major distributed computing
paradigm in which services are pushed from the cloud to the edge of
the network to enable a wide range of Internet of Things (IoT) appli-
cations [37]. Moreover, edge devices are increasingly running Deep
Learning models to support advanced data-intensive applications
such as autonomous driving [22] and smart traffic infrastructures
[4]. Due to the limited computing resource, edge devices typically
execute a compressed set of DNN models [10, 20, 50] or offload par-
tial DNNworkloads via the connectivity to the cloud [15, 17, 54, 55].

However, a key bottleneck of current edge systems lies in the
reliance on the powerful centralized Internet infrastructure. Re-
cently, with the advances of communication technology [24, 49],
there emerges a new class of cooperative edge systems1 where a
large number of edge nodes are connected with each other through
local peer-to-peer connectivity [48, 51]. Compared to the conven-
tional edge architecture, cooperative edge systems yield superior
scalability, as they allow edge devices to be deployed over a large
geographic region without relying on the computing or commu-
nication capability of the Internet. For instance, a smart roadside
infrastructure system [25] can achieve real-time intelligent traf-
fic monitoring and support autonomous driving [13, 36] through
the collaboration of sensor-enabled lampposts connected via local

1Cooperative Edge is also referred to as Fog Computing System [8] in some contexts.
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wireless networks. Moreover, such a system can serve as a shared in-
frastructure for a multitude of different geo-distributed applications
developed and deployed by different service providers.

Despite the aforementioned advantages, a cooperative edge sys-
tem must address several major challenges. First, because of the
inherently distributed nature, the edge nodes must handle heavy
and often uneven workloads. For instance, a smart lamppost typ-
ically needs to execute multiple DNN models to process the data
streams of multi-modal sensors such as LiDAR, radar, and thermal.
In a smart factory [6, 38], a high-throughput assembling pipeline
can pose a heavier workload on the edge nodes in proximity than
other nodes. Therefore, as a fundamental requirement, a cooper-
ative edge system must not only support concurrent DNN tasks
on each edge node, but also must collaborate efficiently to support
advanced data-intensive and real-time applications. Moreover, mo-
bile and geo-distributed applications such as autonomous driving
are likely built in different system environments. To address such
heterogeneity in execution environments, mainstream virtualiza-
tion technologies such as containers are increasingly available on
the network edge [29]. However, the current containerization tech-
nology lacks the key support for concurrent DNN execution. For
instance, multiple containers cannot access GPU resources on the
same edge simultaneously.

To address these challenges, we propose a new cooperative edge
system named CoEdge, which supports distributed real-time appli-
cations through efficient collaboration among different edge nodes
and concurrent execution of DL tasks on a single edge node. The
design of CoEdge is based on a hierarchical DL task scheduling
framework, which implements global task dispatching and batched
DNN execution on local edge nodes. The global task dispatcher
allocates DL tasks to edge nodes and achieves efficient edge collab-
oration by jointly considering the network bandwidth among edge
nodes and real-time performance for DL tasks on each edge node.
Moreover, we design a local batched DNN execution mechanism
for efficient resource utilization on each edge node. Different from
general batch processing for model training, we aim to use batch to
process real-time inference tasks. CoEdge can batch the inference
tasks that use the same model as much as possible, resulting in
better GPU resource utilization and real-time performance. Lastly,
we propose a novel approach called GPU-aware concurrent DL con-
tainerization, which provides an isolated execution environment
for each DL task while ensuring concurrent model inferences can
share the same GPU. Meanwhile, this GPU-aware containerization
structure can well support the local batch execution.

We implement CoEdge based onmainstream industrial platforms
KubeEdge[47], ROS2 [23], and TensorRT [31].We conduct extensive
experiments on an indoor testbed and a real-world outdoor smart
lamppost testbed of 6 nodes. Our results show that CoEdge can
support distributed DL tasks to achieve satisfactory real-time per-
formance. Moreover, compared to several state-of-the-art baselines,
CoEdge can reduce the deadline missing rate up to 80% without
sacrificing any accuracy.

The contributions of this paper are summarized as follows:

(1) We propose a hierarchical DL task scheduling framework
that supports efficient distributed DL tasks on the coopera-
tive edge system.

(2) We design a batched DNN execution mechanism that utilizes
GPU resources efficiently and optimizes real-time perfor-
mance for concurrent DNN execution on the edge nodes.

(3) We devise a GPU-aware concurrent DL containerization ap-
proach to support concurrent DL tasks with diverse execu-
tion environments on the edge node.

(4) We implement CoEdge and evaluate the performance through
extensive experiments on a real-world smart lamppost testbed
and an indoor testbed. Our results validate key advantages of
CoEdge in supporting distributed real-time DL applications.

2 RELATEDWORK
2.1 DL Task Offloading
To meet the stringent timing requirements for DL tasks on edge
devices, an efficient approach for accelerating the DNN model is to
offload the compute workload to the cloud or other edge devices.
Neurosurgeon [15] predicts the latency and power consumption of
each layer and automatically partitions DNN at the layer granular-
ity for workload offloading. EdgeML [55] dynamically adjusts the
partition points based on the runtime communication bandwidth
with a reinforcement learning algorithm. ENGINE [7] adopts a
greedy method to determine which tasks should be executed locally
or sent to the cloud to minimize the energy cost. However, these
methods only consider a single client and server, while distributed
DL tasks typically require a coordinated execution among multiple
nodes.

To balance the workloads among multiple edge devices, the work
in [30] optimizes the overall response time for user requests un-
der an edge-cloud architecture by formulating an integer linear
programming problem. Their approach offloads all data on edge
devices to the cloud, which leads to high latency for edge-cloud
communication and cannot fully utilize the computing resources
of edge devices. Dedas [27, 28] is an online deadline-aware task
dispatching and scheduling mechanism. Dedas offloads tasks to the
cloud when the edge devices cannot satisfy tasks’ real-time require-
ments. This work assumes that resource-rich servers are deployed
close to the source of the data and the end devices, which is not
held in cooperative edge platforms. What’s more, cloud offloading
may lead to privacy disclosure.

2.2 Concurrent DL Tasks on the Edge
Several works are focused on optimizing the real-time performance
of concurrent DL tasks on the edge. DART [46] employs a pipeline-
based scheduling architecture with data parallelism for real-time
DNN inference requests. RT-mDL [20] optimizes the DL task exe-
cution on edge platform to meet their diverse real-time/accuracy
requirements by joint model scaling and scheduling. BlastNet [19]
proposes a novel model inference abstraction and designs a dy-
namic cross-processor scheduler to support efficient DNN model
inference on heterogeneous CPU-GPU platforms. However, the
above approaches focus on the real-time performance of concur-
rent DL tasks on a single edge device, and do not consider the model
inferences from other edge devices in a cooperative manner.

Moreover, current works do not address the compatibility is-
sues when deploying multiple DNN models on a set of shared edge
platforms. For example, the pre-/post-processing of multiple tasks
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may require different versions of the software packages like NumPy,
SciPy, and Numba. To support an isolated environment for DL tasks,
a common approach is encapsulating DL tasks in separate contain-
ers [42, 45]. However, such a containerization technique cannot be
directly adapted for concurrent DL tasks due to the limitations of
edge GPU platforms, such as the lack of virtualization support. A
recent work [34] partitions containers into two parts, one shared
container for executing codes run in the same environments and
one individual container. Although such an approach can support
the containerization of multiple edge applications, it is not designed
for concurrent DL tasks on GPU-accelerated platforms.

3 APPLICATIONS
There exists a range of distributed real-time applications that adopt
DL models for data/compute-intensive tasks, such as smart traffic
infrastructure [4], autonomous driving [22], smart ports and facto-
ries [6, 38]. Here, we describe smart roadside infrastructure as an
example to illustrate the possible application scenarios of CoEdge.

Fig. 1 shows a smart roadside infrastructure that consists of mul-
tiple smart sensor-enabled lampposts. Each lamppost equips with
multiple modalities of sensors such as thermal cameras, mmWave
radars, and LiDARs to provide smart trafficmonitoring, infrastructure-
assisted autonomous driving, and other smart services. Neverthe-
less, edge nodes on lampposts usually have limited computing and
power budgets. For instance, without an overhaul upgrade, ex-
isting city roadside lighting infrastructure only provides a fixed
power supply of tens of Watts. These limitations are not unusual for
large-scale edge systems such as smart lampposts that must rely on
existing power and network facilities. In the following, we discuss
the common characteristics and requirements of such applications.

3.1 Real-time and concurrent DNN execution
Many applications supported by smart roadside infrastructure have
stringent timing requirements. For instance, to achieve real-time
vehicle tracking, the edge nodes on smart lampposts must detect
passing vehicles and communicate with nearby edge nodes within
seconds. In infrastructure-assisted autonomous driving [36], the
edge nodes can even be required to process sensor data and transmit
the results to vehicles in real time. Moreover, as a shared infrastruc-
ture, each edge node is typically required to execute a multitude
of these applications concurrently. For instance, a node may run
multiple DNN models for vehicle detection from its adjacent nodes
at the same time. The limited on-device resources and tight real-
time requirements hence pose a major challenge for the design of
cooperative edge systems.

3.2 Geo-distributed, uneven workloads
The services and workloads among multiple lampposts are inher-
ently unevenly distributed due to the diverse characteristics of
sensors and the complexity of road conditions. For example, ther-
mal cameras, mmWave radars, and LiDARs typically have a sensing
range of 10 to 500 meters. As a result, these sensors are often de-
ployed according to road/traffic conditions and budgets, which
results in highly diverse and dynamic data/compute workloads on
different edge nodes.

Computing
Unit

Sensors Cloud

Container

DL Tasks DL TasksDL Tasks

Vehicle Detection

DL Tasks

Pedestrain Counting

Auto-Driving Service

Container Container ContainerService
Request

Figure 1: Task scenario of distributed real-time support for
roadside infrastructure.

3.3 Diverse development/runtime environments
As a shared infrastructure, the edge node must support a diverse set
of mobile and geo-distributed applications, which are likely devel-
oped by different service providers in different software/hardware
environments. For instance, different authorities may develop and
deploy services for security surveillance, vehicle monitoring, track-
ing, and autonomous driving applications. To address such hetero-
geneity in system environments, mainstream virtualization tech-
nologies such as containers are widely adopted by existing edge
systems [29]. However, the current containerization technology
lacks the key support for concurrent DNN execution on edge GPU.
For instance, multiple containers cannot access the same edge GPU
simultaneously, which cannot support concurrent DNN execution
with efficient resource utilization.

4 SYSTEM DESIGN
4.1 Overview of CoEdge
To support distributed real-time DL tasks among multiple edge
devices, we propose a new cooperative edge system named CoEdge.
CoEdge integrates global task dispatching and local batched real-
time DL execution into a hierarchical DL task scheduling frame-
work. Moreover, we also devise a novel GPU-aware concurrent
DL containerization approach that provides an isolated execution
environment for each task while ensuring efficient utilization of
computing resources on the edge platform. A bird-eye view of
CoEdge is shown in Fig. 2. CoEdge has three major components,
i.e., global task dispatcher, batched real-time DNN execution, and
GPU-aware concurrent DL containerization, which work together
as a cooperative edge system for executing distributed real-time
DL tasks.

In the hierarchical DL task scheduling framework, we design a
global task dispatcher to balance the DL workloads among different
edge devices and a local batched DNN execution mechanism to
improve the real-time performance of DL tasks on each edge node.
The global task dispatcher jointly considers the network bandwidth
among edge nodes and real-time performance for DL tasks on
each edge node. A key challenge here is to estimate the real-time
performance (i.e., response time from task release to completion)
of each DL task under different strategies. However, the execution
time of distributed DL tasks is challenging to estimate due to the
dynamics of the network condition and runtime resources on the
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Figure 2: The system architecture of CoEdge: the global task dispatcher optimizes the allocation of distributed DL tasks,
batched real-time DNN execution batches the DNN model inference of different DL tasks, and the GPU-aware concurrent DL
containerization supports different execution environments for distributed DL tasks.

edge platform. To address this challenge, CoEdge adopts a two-stage
optimization strategy during the task dispatch. First, CoEdge finds
an initial allocation strategy based on the offline profiled execution
time. Then, CoEdge optimizes the allocation strategy online based
on the real-time performance measured at runtime. Meanwhile, our
global task dispatcher also takes the task similarity into account to
encourage batched execution on each node.

On each edge node, we batch the model inferences that use the
same model as much as possible while ensuring their real-time
requirements. This design is motivated by the key observation that
batch processing of the same model will increase the GPU spa-
tial utilization and thus decrease the average inference time for
each DNN model. When multiple DL tasks adopt the same DNN
model, the data from different sources could be concatenated for
batched inference, which avoids executing the same model repeat-
edly and hence reduces resource usage. A challenge in exploiting
batch processing here is that a larger batch size corresponds to
higher GPU utilization, which may lead to deadline missing due to
the prolonged overall execution time. CoEdge addresses this issue
by profiling the DNNmodel inference time with different batch size
settings offline and then optimizes the batch size with an online
DNN inference scheduler. Our DNN inference scheduler maximizes
the benefit of batched model inference while meeting the real-time
requirements for each task by controlling the execution order and
batch size of each DNN model inference. Under such a mechanism,
we can utilize GPU resources more efficiently and achieve better
real-time performance.

As a mainstream virtualization technology, the container is es-
sential for supporting distributed DL tasks, which are typically
developed in different system environments. However, a key chal-
lenge is that current containerization technology lacks support
for the edge GPU [33]. Specifically, multiple containers cannot ac-
cess the GPU on the same edge node simultaneously, which leads
to inefficient resource utilization due to the sequential execution
of DL tasks. We design a GPU-aware concurrent DL container-
ization approach to provide an isolated execution environment
for each DL task while ensuring concurrent model inferences can
share the same GPU. Our containerization mechanism also supports
batched DNN execution of concurrent tasks. With our GPU-aware

DL containerization structure, DL tasks with different environmen-
tal dependencies can be executed simultaneously on the same GPU.
Specifically, CoEdge decomposes each DL task into CPU-based
pre/post-processing and GPU-based DNN inference subtasks. Then,
CoEdge encapsulates each CPU subtask into a separate container
and all the DNN inference subtasks into one container. This way, we
can fully utilize computing resources and resolve the incompatible
computing environments of different DL tasks.

4.2 Hierarchical DL Task Scheduling
As described in Section 3, to support concurrent execution of real-
time geo-distributed DL tasks, the system needs to coordinate their
execution among different edge nodes and optimize their execu-
tion on a single edge node. Considering the unbalanced workload
caused by the sensor distribution, the geographical distribution,
and the lack of computing resources of a single edge node, we pro-
pose a hierarchical DL task scheduling framework, consisting of a
task dispatcher on the master node and local schedulers on edge
nodes. The framework accounts for the location of sensors and
network conditions to minimize the communication delay caused
by data transmission. Moreover, it effectively uses the computation
resources and communication bandwidth among edge devices.

4.2.1 Overview of hierarchical DL task scheduling. Unlike the tradi-
tional distributed task scheduling which only balances the work-
loads among nodes [44], we design a hierarchical DL scheduling
mechanism for the distributed DL task execution, which fully con-
siders the workload balance among nodes and the actual execution
efficiency of each node. As shown in Fig. 3, our hierarchical DL
scheduling framework consists of two parts: a task dispatcher on
the master node and batched DNN executions on multiple edge
nodes. The task dispatcher allocates the DL tasks to edge nodes
based on the estimation of their real-time performance. Each edge
node runs the allocated DL tasks with the batched real-time DNN
execution mechanism. It also monitors the actual real-time perfor-
mance of each DL task and communicates with the master node
for run-time allocation strategy optimization.

4.2.2 Task dispatcher on the master node. To coordinate distributed
DL task execution among different edge devices, we design a task
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Figure 3: Hierarchical DL task scheduling framework of Co-
Edge

dispatcher on the master node. It contains a two-stage optimizer,
which allocates tasks based on the offline profiled execution time
and then optimizes the allocation based on the online real-time per-
formance. We also design a similarity-based strategy to maximize
the benefit of local batched DNN execution where more DL tasks
with the same DNN model are executed on the same node.

Suppose there are totally𝑘𝑚𝑎𝑥 edge nodes𝑁 = {𝑛1, 𝑛2, ..., 𝑛𝑘𝑚𝑎𝑥
}.

And there are 𝑚𝑚𝑎𝑥 DL tasks denoted as 𝐷 = {𝜏1, 𝜏2, ..., 𝜏𝑚𝑚𝑎𝑥
}.

Each DL task can be represented as 𝜏𝑖 = {𝑛𝑠𝑟𝑐
𝑖

, 𝑛𝑒𝑥𝑒
𝑖

, 𝑠𝑖 , 𝑀𝑖 , 𝑑𝑖 , 𝑃𝑖 },
which includes data source node 𝑛𝑠𝑟𝑐

𝑖
, its execution node 𝑛𝑒𝑥𝑒

𝑖
,

source data size 𝑠𝑖 , DNN model type𝑀𝑖 , task deadline 𝑑𝑖 and task
priority 𝑃𝑖 . We denote the set of tasks deployed on the node 𝑛𝑘 as
S𝑘 = {𝜏𝑚 |𝑋 (𝜏𝑚, 𝑛𝑘 ) = 1,∀𝑚}. 𝑋 (𝜏𝑚, 𝑛𝑘 ) is an indicator function,
and 𝑋 (𝜏𝑚, 𝑛𝑘 ) = 1 indicates the task 𝜏𝑚 is deployed on the node 𝑛𝑘 .
We denote the end-to-end latency of DL task 𝜏𝑚 executed on edge
node 𝑛𝑘 as𝑇𝑚,𝑘 , where𝑇𝑚,𝑘 = 𝑇𝑐𝑜𝑚

𝑚,𝑘
+𝑇 𝑒𝑥𝑒

𝑚,𝑘
, i.e., the sum of the com-

munication time and the execution time. We quantify the real-time
performance of each DL task using the deadline missing rate. We as-
sume that each DL task releases jobs periodically. The deadline miss-
ing rate is the percentage of jobs that missed their deadlines among
all jobs of a periodic DNN inference task, which can be denoted by
𝑀𝑅(·) = (𝑁𝑜𝑣𝑒𝑟𝑑𝑢𝑒_𝑗𝑜𝑏 + 𝑁𝑑𝑟𝑜𝑝𝑝𝑒𝑑_𝑗𝑜𝑏 )/𝑁𝑎𝑙𝑙_𝑗𝑜𝑏𝑠 . 𝑁𝑜𝑣𝑒𝑟𝑑𝑢𝑒_𝑗𝑜𝑏

refers to the number of jobs whose end-to-end latency𝑇𝑚,𝑘 exceeds
its deadline 𝑑𝑚 .

Our goal is to minimize the tasks that are already allocated
on the edge nodes as well as those that have not been deployed,
because they also need to be deployed if there exist available re-
sources. We formulate the total missing rate of all deployed tasks
as

∑𝑚𝑚𝑎𝑥

𝑚=1
∑𝑘𝑚𝑎𝑥

𝑘=1 𝑀𝑅𝑚,𝑘 × 𝑋 (𝜏𝑚, 𝑛𝑘 ), and the total missing rate of
not deployed tasks as

∑𝑚𝑚𝑎𝑥

𝑚=1
∑𝑘𝑚𝑎𝑥

𝑘=1 (1 − 𝑋 (𝜏𝑚, 𝑛𝑘 )). The goal is
to minimize the total missing rate of the deployed tasks and not
deployed tasks as defined below:

max
∀𝑚,𝑘

𝑚𝑚𝑎𝑥∑︁
𝑚=1

𝑘𝑚𝑎𝑥∑︁
𝑘=1

(1 −𝑀𝑅𝑚,𝑘 ) × 𝑋 (𝜏𝑚, 𝑛𝑘 )

s.t.
𝑘𝑚𝑎𝑥∑︁
𝑘=1

𝑋 (𝜏𝑚, 𝑛𝑘 ) ≤ 1, ∀𝑚,

𝑀𝑅𝑚,𝑘 ≤ 𝜖𝑖 , ∀𝑋 (𝜏𝑚, 𝑛𝑘 ) = 1,

(1)

where 𝜖𝑖 is the tolerable deadline missing rate of 𝜏𝑖 .
We now analyze the communication time of the DL task. In

real-world settings, communication bandwidth is influenced by a
variety of factors, including network topology, signal strength, and
interference. Real-time bandwidth prediction is still a challenging
problem. There exist many methods for bandwidth prediction based
on complex models [26] [35]. However, these approaches incur
excessive computation on edge devices. In this work, we measure
the bandwidth periodically and calculate the communication delay
based on the measured bandwidth. The communication time for
DL task 𝜏𝑚 is defined in Eq. 2.

𝑇𝑐𝑜𝑚
𝑚,𝑘

=
𝑠𝑚

𝐵(𝑛𝑚𝑠𝑟𝑐 , 𝑛𝑘 )
(2)

where 𝐵(𝑛𝑚𝑠𝑟𝑐 , 𝑛𝑘 ) denotes the bandwidth between edge node 𝑛𝑠𝑟𝑐
and 𝑛𝑘 .

Another part of end-to-end latency is attributed to the execu-
tion of DNN models. There exist several solutions for predicting
DNN inference time based on generalized prediction models. Some
studies [21] use the model’s FLOPS or/and MAC as proxies for la-
tency. However, these metrics can not precisely capture the actual
delay, because they do not account for the difference of platforms
and network structure [9]. Other solutions like nn-Meter [52] de-
tect the fusion rules of a target platform and generate individual
predictors of the kernel. These methods can predict the inference
time of a single model on a specific platform but are not applicable
for concurrent DL task execution. To accurately model concurrent
DNN inference time, many factors must take into account, such as
blocking time, scheduling policy, the number of concurrent tasks,
etc. To address this challenge, we first estimate the execution time
of a task based on its execution condition in the whole task set
and then measure the real-time performance online. The estimated
execution time for DL task 𝜏𝑚 can be represented as

𝑇 𝑒𝑥𝑒
𝑚,𝑘

=

|S𝑘 |∑︁
𝑗=1

𝑝𝑚 ×𝑇𝑎𝑣𝑔 ( 𝑗)
𝑝 𝑗

+𝐶 (3)

where 𝑝 𝑗 denotes the period of task 𝜏 𝑗 ,𝑇𝑎𝑣𝑔 ( 𝑗) denotes the average
model inference time of task 𝜏 𝑗 , C is a sum of pre/post-processing
time.

However, due to the dynamics in resource usage, the estimation
of communication delay and execution delay obtained with the
above method may be inaccurate at runtime. Hence, we adjust
the end-to-end latency when the actual missing rate is larger than
the estimated missing rate, which can be represented as 𝑇 𝑒𝑥𝑒

𝑚,𝑘
=

(1 + 𝛼) ×𝑇 𝑒𝑥𝑒
𝑚,𝑘

. We will illustrate how to adjust this parameter in
the following.

To achieve the objective defined in Eq. 1, we design a task dis-
patcher as shown in Fig. 3. The task dispatcher is based on an
iterative profiling approach. It tries to deploy as many tasks as
possible on edge nodes while minimizing the deadline missing rate.
Given a set of edge nodes and DL tasks, CoEdge allocates the DL
tasks from high to low priority. In the first round of allocation, Co-
Edge estimates the communication time (Eq. 2) and the execution
time (Eq. 3) based on the offline profiled data. For a new DL task 𝜏𝑚
to be allocated to the node 𝑛𝑘 with the task set S𝑘 , we first check
whether its estimated time𝑇𝑚,𝑘 on this node can meet the expected
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deadline. If the deadline can be met, we calculate its similarity with
the current DL tasks on this node based on the cosine similarity as
shown in Eq. 4,

𝑆𝑖𝑚(𝜏𝑚,S𝑘 ) = 𝑐𝑜𝑠𝑖𝑛𝑒 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 (𝐸𝑉 (𝜏𝑚), 𝐸𝑉 (S𝑘 )) (4)

where 𝐸𝑉 (·) denotes the number tuple of the model type set. For
example, if there is a total of 3 model types, DL task 𝜏𝑚 has the
model of type 2, 𝐸𝑉 (𝜏𝑚) = (0, 1, 0). If there are 2 tasks with model
type 1, 3 tasks with model type 3 in S𝑘 , 𝐸𝑉 (S𝑘 ) = (2, 0, 3). We
choose the node with the highest task similarity and the lowest
latency as the node to host the current DL task. CoEdge repeats
the above allocation process until there is no new DL task that can
meet its deadline.

Then, each node records the run-time deadline missing rate of
each task when running tasks according to the allocation strategy.
If the measured deadline missing rate cannot meet the real-time
requirements of the DL task, the dispatcher will remove the task
with the same and lower priority and increase the parameter 𝛼 .
This is because the online deadline missing rate may be caused by
the deterioration of network conditions or a shortage of resources
on edge devices. We update the measured bandwidth to cope with
such performance degradation caused by bandwidth deterioration.
Since resource shortage on the edge platform will influence the
actual execution speed of the DL task, we decrease the 𝛼 to bring
the estimated execution time closer to the actual value.

4.3 Batched DNN Execution
In this section, we will introduce how to efficiently utilize the GPU
resources to meet real-time requirements for each DL task. Previous
work [20] proposes a GPU task packing mechanism to increase the
GPU spatial utilization for real-time DNN execution. However,
this mechanism packs the DL tasks with different execution times,
which may lead to synchronization issues and unnecessary waiting
time. As we discussed in Section 3, for distributed DL tasks, we
need to process the data from different edge nodes with the same
DNN model. Hence, we propose to batch the data and process them
simultaneously, which increases the GPU spatial utilization and
avoids the synchronization overhead among different DL tasks.
As shown in Fig. 4, batch processing can effectively decrease the
average inference time of eachmodel. For example, the YOLOmodel
with an input size of 160× 160 can decrease its average DNN model
inference time by a factor of 2 with a batch size of 3. The batch
size represents the number of samples (e.g., image frames) that
will be passed through the network at one time. Motivated by this
insight, we design a new batched DNN execution mechanism to
run the application in a batch manner while ensuring that each
task can complete in time. Specifically, we design a DNN inference
scheduler to schedule the execution order of different models to
meet the real-time requirements for each DL task. Meanwhile, we
also adjust the batch size dynamically for each model inference to
achieve more efficient GPU resource utilization. A larger batch size
corresponds to higher GPU utilization but may lead to deadline
missing for some tasks. To address this problem, we profile the
DNN model inference time with different batch size settings offline
and adjust the batch size online.
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Figure 4: Batch Efficiency (evaluated under TensorRT on the
edge platform NVIDIA Jetson TX2).

Container 1
 Task 1 - Pre

Container 2
 Task 2 - Pre

...

Container n
 Task 2 - Pre

Container n+1
Model 1

Model 2

...
Model m

...

Executed Model

Batch Size

Inference
Scheduler

Batched
Execution

...

Model i

Batch
Size b

Container 1
 Task 1 - Post

Container 2
 Task 2 - Post

...

Container n
 Task 2 - Post

Figure 5: Batched DNN execution on the single edge node.

As we will discuss in Section 4.2, CoEdge pushes the prepro-
cessed data from the application queue to the model inference
queue. The DL tasks that adopt the same DNN model are put in the
same DNN model inference queue. For each model inference, we
launch an independent process and preload the model into memory
before execution. Thus, this approach avoids the huge overhead
caused by model loading and inference initialization.

To achieve efficient GPU resource utilization and meet the real-
time requirements for each DL task, we design a newDNN inference
scheduling algorithm to control the execution order and batch size
of each DNNmodel inference. Our scheduler first determines which
model to be executed according to the urgent level of each model
inference. Specifically, as shown in Eq. 5, we first calculate the
minimum deadline for all the jobs in each model inference queue.
𝐷𝐷𝐿𝑖,𝑔 (𝑖 ) denotes the absolute deadline of 𝑔(𝑖)𝑡ℎ job in the model
inference queue for model 𝑖 . 𝑔(𝑖) is the total number of all the jobs
in the current model inference queue 𝑖 . Then, we choose the model
that has the minimum deadline in the model inference queue for
execution.

𝑀𝑜𝑑𝑒𝑙 𝐼𝑛𝑑𝑒𝑥 = argmin
i

{𝑚𝑖𝑛 𝑗=1,2...,𝑔 (𝑖 ) {𝐷𝐷𝐿𝑖, 𝑗 }} (5)

Our scheduler then determines the batch size for each model in-
ference. The main goal here is maximizing the benefit brought by
batched model inference while meeting the real-time requirements
for each task. We achieve this by profiling the execution time for
each setting of batch size offline and determining the batch size
online. For offline profiling, we profile the setting of batch size from
1 to 10. This is sufficient to accommodate the dynamics at runtime
because the actual deadline for each job is unlikely to exceed 10
times the execution time of single model inference. At runtime, we
choose the maximum batch size that can meet the real-time require-
ments of all the jobs. Specifically, as shown in Eq. 6, we compare
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the estimated completion time (i.e., current time plus estimated
execution time) and the deadline of each job to estimate whether
the selected batch size can meet the real-time requirement of each
job.

𝐵𝑎𝑡𝑐ℎ 𝑆𝑖𝑧𝑒 = argmax
b

{𝐶𝑢𝑟𝑇𝑖𝑚𝑒 + 𝐸𝑥𝑒𝑇𝑖𝑚𝑒 (𝑖, 𝑏)

< 𝑚𝑖𝑛𝑖,2,...,𝐼 , 𝑗=1,2...,𝑔 (𝑖 ) {𝐷𝐷𝐿𝑖, 𝑗 }}
(6)

where 𝐸𝑥𝑒𝑇𝑖𝑚𝑒 (𝑖, 𝑏) denotes the profiled execution time of model 𝑖
with batch size 𝑏. Our scheduler will update the execution strategy
(i.e., model index and batch size) when the current model finishes
execution.

Once the model index 𝑖 and batch size 𝑏 for the current model
execution is determined, the scheduler will fetch data of batch size
𝑏 from the model inference queue. The DNN executor then batches
the fetched data and feeds it to the model 𝑖 for inference. Under
this batched DNN execution mechanism, CoEdge can effectively
utilize the GPU resource and thus better meet timing requirements
for concurrent real-time DNN inferences.

4.4 GPU-aware Concurrent DL Containerization
Containers have been widely used on edge systems for supporting
different DL tasks with isolated execution environments. As we
discussed in Section 3, real-world DL tasks often have different re-
quirements on execution environments, which need to be executed
independently in separate containers. However, current low-power
edge devices (e.g., NVIDIA Jetson TX2, AGX Xavier) usually have
only one GPU and do not support GPU virtualization. In this case,
if we encapsulated each DL task in a separate container, it would
be impossible to run multiple DL tasks at the same time, since dif-
ferent containers cannot access the GPU on the same edge node
simultaneously. As a result, multiple DL tasks must be executed
sequentially. However, considering DL tasks have both workloads
on CPU and GPU, sequential execution of DL tasks will lead to
inefficient resource utilization.

A naive way to address this problem is to encapsulate all DL tasks
in one container and bind the container to the GPU on the edge
device. However, this approach leads to two major issues in system
deployment. First, the execution environments of different DL tasks
may conflict with each other. As a result, some DL tasks may fail to
execute. For example, a model developed in 2022 may be built under
PyTorch 1.13, while a model developed in 2018 is likely to be built
under PyTorch 0.4. Second, a single container that must execute
multiple DL tasks may have complex environmental dependencies,
which makes it infeasible to the deployment of additional DL tasks.
For example, existing applications in a single container all rely on
NumPy1.14 for array processing, while the new DL tasks have a
package of Numba0.55.2 which needs NumPy<1.23, >=1.18. As a
result, it will be infeasible for the deployment of the new DL task.

This section will introduce our design of GPU-aware concurrent
DL containerization, which provides an isolated execution envi-
ronment for each DL task, and ensures that all model inferences
can share the same GPU resource. Our containerization mechanism
is carefully designed to support the local batch execution as dis-
cussed in Section 4.3. With our mechanism, DL tasks with different
environmental dependencies can be executed simultaneously on

the same GPU. This enables different DL tasks with the same DNN
model can be executed in a batched manner.

An end-to-end DL task contains not only the model inference
on the GPU but also the execution of pre-processing and post-
processing on the CPU, which accounts for a considerable portion
of end-to-end task delay [20]. For most DL tasks, only the model
inference will occupy the GPU, while pre-/post-processing mostly
use CPU. Therefore, we split each DL task into two to three parts
and encapsulate them into separate Docker containers, where all
DNN model inferences of different DL tasks share a container that
is bound to the GPU on the edge device. This mechanism enables
more efficient utilization of heterogeneous computing resources on
edge devices and resolves the incompatible software dependencies
of different DL tasks at the same time.

GPU CPU

Shared Container

Container 1Pod

KubeEdge Worker

Pre-processing

DL Task 1

DL Inference Post-processing

...

DL Task 2
...

DL Task n

Camera-based Object Detection

Container n

Figure 6: GPU-aware concurrent DL containerization on the
single edge node.

As shown in Fig. 6, each DL task will be divided into three
parts: pre-processing, DNN inference, and post-processing. The
pre-processing and post-processing of one task are assigned to two
containers, while all DNN inferences of different tasks share the
same container, which can directly access the GPU resource of the
edge device. Meanwhile, to eliminate the differences in dependent
environments of different DNN models, all DNN models are con-
verted to open neural network exchange format (ONNX) [3], and
are managed by the local scheduler, which will be discussed in
Section 4.3. As a result, all DL tasks can be isolated from each other
while being processed concurrently in real time.

Although GPU-aware containerization can make the DL tasks
isolated, it brings challenges in inter-container communication. Dif-
ferent containers use the same host OS kernel and communicate
using one of the three mechanisms: named pipes, UNIX domain
socket, and shared memory. Named pipes are a FIFO method, typi-
cally used for very small and high-frequency message communica-
tions between two processes. However, large chunks of sensor data
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Figure 7: The software implementation of CoEdge on
KubeEdge.

often need to be passed between containers when they are executed
concurrently. The isolated containers may communicate with each
other via the UNIX domain socket. However, the socket does not
support multicast or broadcast, which is required in our design to
achieve communication between a single node and multiple nodes.

Hence, we adopt the shared memory as the buffer of a queue to
achieve inter-container communication. Specifically, each queue is
connected by peer-to-peer communication, and only transmits the
address of the data on the shared memory, which can reduce the
copying times of the data.

5 IMPLEMENTATION
We have designed and implemented CoEdge based on KubeEdge
[47], ROS2 [23] and TensorRT [31]. We choose KubeEdge since it
is a lightweight system to facilitate the management of edge con-
tainerized applications, and is gaining the support of the developer
community. To manage heterogeneous data sources, CoEdge reads
the sensor data through ROS2, which is widely used for sensor
management. We also convert the DNN models into the TensorRT
format to speed up the DNN inference on edge platforms. Fig. 7
shows the architecture of CoEdge implementation.
Master node. Initially, on the master node, CoEdge collaborates
with the KubeEdge master for task dispatching. Once the global
task dispatcher updates the task allocation strategy, it will dispatch
the corresponding containers that encapsulate the sub-tasks (i.e.,
pre/post-processing and model inference) to the edge node. Mean-
while, the corresponding task parameters such as the IDs of data
source nodes will also be dispatched to the target edge node.
Edge node. On the edge node, CoEdge runs concurrent DNN
tasks on the received containers. Those containers are managed by
KubeEdge. CoEdge also launches a container for data management
based on ROS2. In this container, CoEdge reads the sensor data with
the sensor driver and creates sensor publishers for dispatching data.
CoEdge also launches sensor subscribers to establish connections
with other sensor publishers for data fetching. For example, if the

Table 1: DNN tasks for evaluation.

DNN Task
Type

Sensor
Type

DNN
Model

Dataset Model
Input Size

Object
Detection-
1

Camera YOLOv5s CoCo [18] (3x640x640)

Object
Detection-
2

Camera YOLOv5s CoCo (3x160x160)

Image
Classification-1

Thermal VGG19 Teledyne
FLIR
ADAS[11]

(3x160x160)

Image
Classification-2

Camera ResNet18 CIFAR10[16] (3x360x360)

Table 2: Computing platforms of edge and master nodes.

Platform GPU CPU Memory Storage
NVIDIA Jetson
TX2 (Edge
Node)

256-core
Pascal

2-core ARM Den-
ver + 4-core ARM
A57

8GB 500 GB

Indoor Master
Node

NVIDIA
GeForce
960M

4-core Intel 8 GB 500 GB

Outdoor Mas-
ter Node

N.A. Intel Xeon GOLD
5117 (14 Core,
2.0GHz, 19.25M)

5x64 GB 2x8 TB

task on Node2 needs the sensor data from Node3, the sensor sub-
scriber on Node 2 will receive the data dispatched from the sensor
publisher on Node3. CoEdge stores the fetched data into shared
memory for task processing as discussed in Section 4.4.

6 EVALUATION
In this section, we first discuss the experimental setup in Section 6.1,
and then describe evaluation metrics and baselines in Section 6.2.
Second, we validate CoEdge on a real-world smart lamppost testbed
and an indoor testbed in Section 6.3 and 6.4, respectively. In addi-
tion, we evaluate the performance of the batched DNN execution
(Section 4.3) and the GPU-aware concurrent DL containerization
(Section 4.4), in Section 6.5 and Section 6.6, respectively.

6.1 Experiment Setup
6.1.1 Smart Lamppost Testbed. We deployed CoEdge on an out-
door smart lamppost network we installed on a university campus
for performance evaluation. The testbed consists of 12 lamppost
nodes and a master node. Table 2 shows the specifications of the
edge and master nodes. Each smart lamppost is installed with an
NVIDIA Jetson TX2 computing board [32] with a MIC-720-AI [1]
waterproof enclosure with auxiliary sockets and an extra 450 GB
solid-state drive (SSD). The communication between edge nodes
is realized using a multi-hop wireless network that achieves an
average throughput of around 80 Mbps by integrating a network
coding algorithm with 802.11ac. The bandwidth between two edge
nodes is measured by iperf3, a popular speed test tool for TCP,
UDP, and SCTP. Each edge node is also equipped with a 4G cellular
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Figure 8: Our outdoor smart lamppost testbed on campus.

dongle to communicate with the master node located in a building.
Fig. 8 shows examples of two lamppost nodes and the deployment
layout.

6.1.2 Lab Testbed. We set up a lab testbed to evaluate CoEdge
under controlled network conditions. We use three NVIDIA Jetson
TX2 computing boards [32] as the edge nodes, which can provide
1.33 TFLOPS of computing power with a maximum power consump-
tion of only 20 watts. A laptop PC with an Intel 4-core CPU and
an NVIDIA GeForce 960M GPU serves as the master node. Table 2
shows the specifications. We connect all edge nodes and the master
node to a PoE switch, which can configure the network bandwidth
during experiments.

6.1.3 DL Tasks. We evaluate CoEdge with four DNN tasks using
two different types of sensors and three DNNmodels. Table 1 shows
the details of DNN tasks. In particular, we apply two different
models for image classification on the camera, i.e., YOLOv5s [14]
and ResNet 18 [12]. Note that we set two image sizes of YOLOv5s for
the two IP cameras of the indoor testbed, which evaluate CoEdge
with different sensor input sizes and workloads. We use VGG19
[39] for object recognition from the thermal camera images. The
number of frames per second of each task is set to 1/deadline. In
addition, we transform each model into the open neural network
exchange format (ONNX) [3] and compile them using TensorRT
[31] to accelerate the execution.

6.2 Evaluation Metrics
We use two metrics to evaluate CoEdge’s real-time performance in
distributed DL tasks.

Deadline Missing Rate.We quantify the real-time performance
of each DL task with/without our system using the deadline miss-
ing rate, which is a widely-used metric for real-time performance
evaluation [5, 20]. Specifically, the deadline missing rate is defined
in Section 4.2, which denotes the percentage of jobs that missed
their deadlines among all jobs of a periodic DNN inference task.
We measure the deadline missing rate within a period of 120 s.
End-to-end Latency. We use end-to-end latency to quantify the
execution efficiency of each DL task. It is defined as the total de-
lay between the launch and the completion of a task, including
the communication time between edge nodes, pre/post-processing
time, DNN model inference time, and the blocking time caused by
resource contention.

6.3 Results on Smart Lamppost Testbed
We implement CoEdge and evaluate its end-to-end system perfor-
mance on the smart lamppost testbed deployed on the campus. As
shown in Fig. 8(a)-8(b), each smart lamppost is equipped with a
small embedded platform (Nvidia Jeston TX2) and sensors such
as thermal cameras. The main purpose of this system is to assist
the campus security office with traffic management and provide
an open testbed for various research projects. Specifically, we used
three major functions in our experiments: real-time traffic moni-
toring, pedestrian recognition, and vehicle recognition, which are
implemented using YOLO, VGG, and ResNet, respectively [2, 53].
The real-time traffic monitoring task detects the vehicle on the road
for trafficmonitoring, and the vehicle recognition task distinguishes
whether there is a vehicle in the field of view.We set the priorities of
three tasks in the following order (from high to low): YOLO-based
real-time traffic monitoring, VGG-based pedestrian recognition,
and ResNet-based vehicle recognition. To emulate diverse traffic
conditions as well as make the experimental results reproducible,
we pre-load a vehicle RGB video dataset (i.e., BrnoCompSpeed [40])
and a vehicle thermal dataset (i.e., Teledyne FLIR [11]) on the edge
nodes of the smart lampposts. BronCompSpeed contains 21 full-HD
videos with 20,865 vehicles, and Teledyne FLOR thermal dataset
contains 9,711 thermal images of 15 categories.

We choose a total of six smart lampposts on the representative
road sections to conduct the experiments. Specifically, the lamppost
nodes #1, 4, 6 are selected to execute the real-time traffic monitor-
ing task. Since the detection range of the camera is 100 meters,
while the distance between the two adjacent lampposts varies from
20 ∼ 60m, we only run a single YOLO task on each of those nodes.
The interval (i.e., task deadline) at which a new job is released is
1.3s. Under this setting, the detection results are obtained before
the vehicle leaves the field of view of the lamppost, which avoids
the accumulation of storage/compute load posed by incoming traf-
fic. The lamppost nodes #1, 2, 3 are selected to perform pedestrian
recognition since those nodes are close to a dining hall, which has
a large flow of people traffic. Since the detection range of each ther-
mal camera is around 20 ∼ 30m, we run 2 pedestrian recognition
tasks on each of those nodes with a task interval of 0.7s. Similarly,
we select the lampposts near a parking lot for vehicle recognition.
In summary, there is a total of 11 real-time DL tasks running on six
lampposts. Table. 3 presents the setting of each application and the
source edge nodes, i.e., the nodes on which the application data is

61



IPSN ’23, May 09–12, 2023, San Antonio, TX, USA Zhehao Jiang† and Neiwen Ling† et al.

Table 3: Application settings and distribution.

Application Source
Node

Model Data Task In-
terval

RT-Traffic-
Monitor

1, 4, 6 YOLO Camera 1.3s

Pedestrian-Rec 1, 2, 3 VGG Thermal 0.7s
Vehicle-Rec 5, 6 ResNet Camera 0.7s

Table 4: Task allocation results on smart lampposts.

Methods Node1 Node2 Node3 Node4 Node5 Node 6
Local +
EDF

Y1,V1,V2 V3,V4 V5,V6 Y2 R1 Y3,R2

CoEdge Y1 V1,V2,V3 V4,V5,V6 Y2 R1,R2 Y3

YOLO ResNet VGG0
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Figure 9: Deadline missing rates of different model types and
tasks on smart lamppost testbed.

generated. We note that a task may be moved to another node for
execution according to our task dispatchingmechanism. In addition,
we measure the communication bandwidth among different edge
nodes (i.e., smart lampposts). We find that the bandwidths among
smart lampposts vary between 50 ∼ 100Mbps.

We evaluate the performance of CoEdge by comparing it against
the local execution strategy with the Earliest Deadline First (EDF)
scheduling policy (i.e., “Local-EDF”). EDF scheduling assigns the
highest priority to the job with the closest absolute deadline. Local-
EDF executes the DL tasks locally on their data source nodes and
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Figure 10: End-to-end latency of tasks and jobs on the smart
lamppost testbed.

adopts EDF scheduling for concurrent DL task execution. Table. 4
shows the task allocation results by CoEdge and baseline Local-EDF.
We observe that CoEdge successfully offloads the DL task from the
heavy-load node to the light-load node (e.g., one ResNet-based DL
task migrated from Node6 to Node5). CoEdge also successfully
groups different DL tasks with the same DNN model into the same
node (e.g., two VGG-based DL tasks migrated fromNode1 to Node2).

We measure the deadline missing rate for each DNN model type
and each DL task to evaluate the real-time performance. Fig. 9(a)
shows the result for each model type. CoEdge consistently main-
tains a deadline missing rate 5.92%, 9.97% and 6.08% for YOLO,
ResNet and VGG, respectively. In contrast, the baseline causes mas-
sive deadline misses, where 19.90% for VGG, 33.48% for YOLO, and
33.91% for ResNet. For example, CoEdge outperforms the baseline
by relative 82.32%. Fig. 9(b) shows the deadline missing rate of each
DL task. CoEdge maintains the deadline missing rate for each DL
task below 10%. Specifically, it reduces the deadline missing rate
by 54.67% for the Y3 task and 46.89% for the R2 task. The deadline
missing rate of CoEdge is higher than that of the baseline for V3
and V4 tasks (but still under 10%). This is because CoEdge allocates
the DL tasks from the other nodes to execute concurrently with
the V3 and V4 tasks, which help meet the real-time requirements
of the allocated tasks.

We further analyze the advantages of CoEdge by calculating the
end-to-end latency per task and inference job. Fig. 10(a) shows the
average latency for each DL task within a duration of 1,300s. We
observe that CoEdge effectively reduces the average latency for
each task (i.e., 220.11𝑚𝑠 and 1065.32𝑚𝑠 of CoEdge and Local-EDF for
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Figure 11: Real-time performance of CoEdge under different
network bandwidths.

the V2 task, respectively). Fig. 10(b) shows the end-to-end latency
of each job released by the V2 task. We observe that the end-to-end
latency of each job of CoEdge is less than that of the baseline. This
is because CoEdge allocates the VGG-based pedestrian recognition
task from the busy node (i.e., Node 1) to the more spare node (i.e.,
Node 2), which allows more resources for the VGG-based task
execution.

In conclusion, the evaluation in this section shows that CoEdge
consistently maintains low deadline missing rates for smart traffic
management task sets among multiple outdoor smart lampposts.

6.4 Impact of Network Bandwidth
We evaluate CoEdge under different network bandwidths on the
indoor testbed. We compare CoEdge with two baselines, i.e., no
offloading and a naive global allocation. To be specific, no offloading
refers to the local execution of DL tasks with our batched DNN
execution mechanism. The naive global allocation strategy allocates
the DL tasks according to the real-time performance of each task.
This baseline differs from CoEdge only in the global allocation
policy, i.e., it allocates the tasks to different nodes only based on
their deadline missing rates.

We test CoEdge under the bandwidth of 100Mbps and 1,000Mbps
through the local area network, which are roughly the upper bounds
of 4G [43] and the user experience data rates of 6G [41], respectively.
To evaluate the fine-grained performance of CoEdge, we deploy
tasks #1 and #2 in Table 1, which are two kinds of YOLOv5s with
the input sizes of 640 × 640 and 160 × 160, respectively. In these
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Figure 12: Real-time performance of batched DNN execution
under different DNN workloads.

experiments, we deploy two larger models (“YOLO-Big”) and two
smaller models (“YOLO-Small”) on node 1, two YOLO-Small models
on node 2 and node 3, respectively. The deadline of YOLO-Big is
set to 1300𝑚𝑠 , and the deadline of YOLO-Small is set to 600𝑚𝑠 .

Fig. 11(a) and Fig. 11(b) show that CoEdge can effectively im-
prove the real-time performance of DL tasks with different levels of
bandwidths. Specifically, as shown in Fig. 11(a), CoEdge achieves
1.56% deadline missing rate at average, while 17.38% for without
offloading and 4.83% for naive global allocation. For the low band-
width, CoEdge can reduce the deadline missing rate by 11.71%
compared with the baseline without workload offloading (i.e., No
Offloading) under high bandwidth. The results show that CoEdge
can achieve fewer deadline missing rates than the two baselines
under both high and low bandwidths.

6.5 Performance of Batched DNN Execution
We evaluate batched DNN execution (c.f., Section 4.3) under dif-
ferent workloads induced by various settings of task numbers and
model types. Specifically, we evaluate low and high workloads of
task sets containing three and six typical DNN inference tasks,
respectively. We test two models, i.e., ResNet and YOLO, under
the two workloads. The deadline for each task is set to be around
four times the measured average inference time of a single DL task.
We use two baselines for this approach: Fixed-priority scheduling
(“Fixed”), which assigns fixed priorities to tasks and does not change
priorities over time; and Earliest Deadline First (“EDF”) scheduling.

Fig. 12 shows the real-time performance of batched DNN exe-
cution in CoEdge under different DNN workloads. We record the
deadline missing rate every 100 seconds and show their distribu-
tion in the figure. We also compute the median value of deadline
missing rates, which are shown as orange lines. Fig. 12(a) shows
that CoEdge achieves 0% deadline missing rate, where the average
deadline missing rates are 21.03% for EDF and 23.75% for Fixed. As
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shown in Fig. 12(c), CoEdge achieves more inferences for ResNet
tasks in time than Fixed and EDF. Specifically, sysname can reduce
the deadline missing rate by 40.86% for ResNet-1 and 71.66% for
ResNet-2 (calculated by median difference) compared with Fixed.
For heavy workload of YOLO, as shown in Fig. 12(b), CoEdge still
can execute all the DL tasks in time (deadline missing rate is close
to 0), while Fixed can only achieve 59.79% on average, and 59.64%
for EDF. Moreover, for the heavy workload of ResNet, CoEdge can
execute most DL tasks in time, while Fixed achieves 83.29% average
deadline missing rate. In conclusion, CoEdge performs better than
most other methods under both light and heavy workloads.

6.6 Overhead of GPU-Aware Concurrent DL
Containerization
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Figure 13: Impact of GPU-aware concurrent DL containeriza-
tion.

The containerization of concurrent DL tasks in Section 4.4 iso-
lates the execution of the runtime environment and enabling the
simultaneous execution of DL tasks. However, containerization can
lead to extra communication overheads among different containers.
We evaluate this overhead by measuring the average end-to-end
execution time of each DL task. We implement a baseline approach
for evaluation, i.e. monotonic containerization (“Mono Container”).
It encapsulates all DL tasks in a single container, which achieves
simultaneous execution of DL tasks in a single monolithic runtime
environment.

We evaluate CoEdge and the baseline with four task sets of a
single ResNet, three ResNets, a single YOLO, and three YOLOs,
respectively. Fig. 13 shows the average end-to-end execution time
of four task sets from CoEdge and the baseline.

The results show that CoEdge only incurs a mere 8.45ms extra
execution time of a single YOLO model compared to the baseline.
When executing three YOLO models, CoEdge only incurs 2.31ms
extra time compared to the baseline. For the task of ResNet, CoEdge
incurs 10.5ms and 8.29ms extra communication time among con-
tainers for a single and 3 ResNet tasks compared to the baseline. The
extra communication time for three DL tasks is less than that for a
single DL task because the overhead is averaged. Hence, CoEdge
achieves efficient GPU-aware concurrent DL containerization with
negligible overheads, while offering isolated runtime environments
for different DL tasks.

7 DISCUSSION
Application Scenarios of CoEdge. Although we evaluate CoEdge
in a smart city scenario, CoEdge can also be applied to other ap-
plications based on the collaborative multi-edge architecture. For

instance, CoEdge can support a wide range of edge applications
like smart buildings, factories, and ports. In a smart port scenario,
several types of edge nodes like smart equipment, lifts and trucks
are present, while each edge node hosts various sensors, such as
cameras and LiDARs. These nodes collaboratively provide services
(i.e., DL tasks) like automatic identification of road trucks and mo-
tion tracking. To achieve efficient edge-based collaboration among
smart equipment, CoEdge is capable of allocating DL tasks to each
smart equipment using the global task dispatcher. Additionally,
based on the local executor, CoEdge can support efficient concur-
rent execution of DL tasks on each edge node of the port.
Integration with Edge-Cloud Offloading. CoEdge can be inte-
grated with existing edge-cloud offloading approaches, in which
partial DL workloads (i.e., several model layers) are offloaded to a
powerful cloud. In a typical existing offloading approach, an edge
node may still suffer from resource contention since concurrent
partial model inference workloads remain on the edge. In such a
case, we may consider sharing the models for batch processing,
since the same model with different offloading policies can share
the same partial model inference. However, the processing time of
the tasks sharing the same model can vary due to different offload-
ing policies. Hence, when estimating batch processing time in the
local executor (see Section 4.3), we need to account for the model
offloading policy of each task.
Scalability to Large-Scale Applications. Although CoEdge is
evaluated on a six-node lamppost testbed, the same design can be
scaled up to a larger system. This is due to the fact that CoEdge
nodes are only responsible for processing the data from nearby
sensors, and are more likely to collaborate with their adjacent
nodes, irrespective of the system scale. In the presence of more
heterogeneous model types, CoEdge needs to conduct urgent task
selection with more models on the local executor, and calculate the
similarity with more tasks on the global dispatcher. However, the
complexity of both algorithms remains the same at𝑂 (𝑛), where n is
the number of tasks for the global dispatcher (see Section 4.2.2) and
the number of model types for the local executor (see Section 4.3).

8 CONCLUSION
In this paper, we present a novel cooperative edge system CoEdge,
which supports concurrent data/compute-intensive deep learning
models for distributed real-time applications such as city-scale
traffic monitoring and autonomous driving. CoEdge contains a
hierarchical DL task scheduling framework that implements global
task dispatching and batched DNN execution. Besides, CoEdge
designs a GPU-aware concurrent DL containerization to support
isolated execution environments for concurrent DNN execution
on the edge platforms. We implement and evaluate CoEdge on a
self-deployed smart lamppost testbed on a university campus. Our
evaluations show that CoEdge achieves up to 82.32% reduction on
deadline missing rate compared to baselines.
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