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ABSTRACT

Deep learning-based visual sensing has achieved attractive accu-

racy but is shown vulnerable to adversarial example attacks. Specif-

ically, once the attackers obtain the deepmodel, they can construct

adversarial examples to mislead the model to yield wrong classifi-

cation results. Deployable adversarial examples such as small stick-

ers pasted on the road signs and lanes have been shown effective

in misleading advanced driver-assistance systems. Many existing

countermeasures against adversarial examples build their security

on the attackers’ ignorance of the defense mechanisms. Thus, they

fall short of following Kerckhoffs’s principle and can be subverted

once the attackers know the details of the defense. This paper ap-

plies the strategy ofmoving target defense (MTD) to generate multi-

ple new deep models after system deployment, that will collabora-

tively detect and thwart adversarial examples. Our MTD design is

based on the adversarial examples’ minor transferability across dif-

ferent models. The post-deployment dynamically generated mod-

els significantly increase the bar of successful attacks. We also ap-

ply serial data fusion with early stopping to reduce the inference

time by a factor of up to 5. Evaluation based on four datasets includ-

ing a road sign dataset and two GPU-equipped Jetson embedded

computing platforms shows the effectiveness of our approach.

CCS CONCEPTS

• Security and privacy → Software and application security; •

Computing methodologies → Neural networks; • Computer

systems organization → Embedded and cyber-physical systems.
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1 INTRODUCTION

To implement autonomous systems operating in complex environ-

ments (e.g., the long envisaged self-driving cars), the accurate and

resilient perception of the environment is often the most challeng-

ing step in the closed loop of sensing, decision, and actuation. The

recent advances of deep learning [34, 41] have triggered great in-

terests of applying it to address the environment perception chal-

lenges. For instance, deep learning-based computer vision tech-

niques have been increasingly adopted on commercial off-the-shelf

advanced driver-assistance systems (ADAS) [32, 40].

However, recent studies show that deep models (e.g., multilayer

perceptrons and convolutional neural networks) are vulnerable to

adversarial examples, which are inputs formed by applying small

but crafted perturbations to the clean examples in order to make

the victim deep model yield wrong classification results. System-

atic approaches have been developed to generate adversarial ex-

amples as long as the attackers acquire the deep model, where the

attackersmay know the internals of themodel [27] or not [55]. Cer-

tain constraints can be considered in the generation process when

the attackers cannot tamper with every pixel of the input. For ex-

ample, in [23], an algorithm is developed to determine adversarial

stickers that can be implemented by physically pasting small pa-

per stickers on road signs to mislead vision-based sign classifier.

Moreover, as demonstrated in [2] and explained in [1], the vision-

based lane detector of Tesla Autopilot, which is an ADAS, can be

fooled by small adversarial stickers on the road and thus direct the

car to the opposite lane, creating life-threatening danger. Thus, ad-

versarial examples present an immediate and real threat to deep

visual sensing systems. The design of these systems must incorpo-

rate effective countermeasures especially under the safety-critical

settings.

Existing countermeasures aim at hardening the deep models

through adversarial training [27, 37, 47], adding a data transforma-

tion layer [8, 16, 17, 21, 29, 46, 72, 75, 77], and gradient masking [11,

57, 60, 65]. These countermeasures are often designed to address

certain adversarial examples and build their security on the attack-

ers’ ignorance of the defense mechanisms (e.g., the adversarial ex-

ample generation algorithms used in adversarial training, the data

transformation algorithms, and the gradient masking approaches).

Thus, they do not address adaptive attackers and fall short of fol-

lowing Kerckhoffs’s principle in designing secure systems (i.e., the
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enemy knows the system except for the secret key [63]). Once the

attackers acquire the hardened model and the details of the defense

mechanisms, they can craft the next-generation adversarial exam-

ples to render the hardened model vulnerable again [5, 12].

At present, the deep model training still requires considerable

expertise and extensive fine-tuning. As such, in the current prac-

tice, a factory-designed deep model is often massively deployed to

the products and remains static until the next software upgrade.

Such a deployment manner grants the attackers advantage of time.

They can extract the deep model (which may have been hardened

by the existing countermeasures) from the software release or the

memory of a purchased product, study it, and construct the next-

generation adversarial examples to affect all products using the

same deep model.

Beyond the static defense, in this paper, we consider a moving

target defense (MTD) strategy [35]. MTD aims to create and de-

ploymechanisms that are diverse and that continually change over

time to increase complexity and cost for attackers, limit the expo-

sure of vulnerabilities and opportunities for attack, and increase

system resiliency [51]. In the MTD of this work, we generate one

or more new deep models after system deployment that the attack-

ers can hardly acquire. Different from the identical and static deep

model that results in a single point of failure, the generated post-

deployment models are distinct across the systems. This approach

invalidates an essential basis for the attackers to construct effec-

tive adversarial examples, i.e., the acquisition of the deep model.

Taking the deep visual sensing of ADAS as an example, under the

MTD strategy, new deep models can be continually trained when

the computing unit of a car is idle. Once the training completes

with the validation accuracy meeting the manufacturer-specified

requirement, the new deep models can be commissioned to re-

place the in-service models that were previously generated on the

car. By bootstrapping the in situ training with randomness, it will

be practically difficult for the attackers to acquire the in-service

deep models, which thus can be viewed as the secret of the system.

With MTD, the adversarial examples constructed based on a stolen

deep model are neither effective across many systems nor effective

against a single victim system over a long period of time. In par-

ticular, extracting the private deep models from a victim system

will require physical access. If the attackers have such physical ac-

cess, they should launch the more direct and devastating physical

attacks that are out of the scope of this paper.

In this paper, we design an MTD approach for embedded deep

visual sensing systems that are susceptible to adversarial exam-

ples, such as ADAS [9, 22] and biometric authentication [30]. Sev-

eral challenges need to be addressed. First, adversarial examples

have non-negligible transferability to new deep models [27, 44,

54, 68]. From our evaluation based on several datasets, although a

new deep model can largely thwart the adversarial examples con-

structed based on a static base model, the adversarial examples can

still mislead the new deep models with a probability from 7% to

17%. Second, the primitive MTD design of using a single new deep

model does not give awareness of the presence of adversarial ex-

amples, thus losing the opportunities of involving the human to

improve the safety of the system. Note that human can be consid-

ered immune to adversarial examples designed based on the per-

turbation minimization principle. Third, in situ training of the new

deep models without resorting to the cloud is desirable given the

concerns of eavesdropping and tampering during the communica-

tions over the Internet. However, the trainingmay incur significant

computational overhead for the embedded systems.

To collectively address the above challenges, we propose a fork

MTD (fMTD) approach based on three key observations on the

responses of new deep models to the adversarial examples con-

structed using the base model. First, the output of a new deep

model that is successfully misled by an adversarial example tends

to be unpredictable, even though the adversarial example is con-

structed toward a target label [44]. Second, from the minor trans-

ferability of adversarial examples and the unpredictability of the

misled new model’s output, if we use sufficiently many distinct

new models to classify an adversarial example, a majority of them

will give the correct classification result while the inconsistency

of all the models’ outputs (due to the unpredictability) signals the

presence of attack. This multi-model design echos ensemble ma-

chine learning [18]. Third, compared with training a new deep

model from scratch, the training with a perturbed version of the

base model as the starting point can converge up to 4x faster, im-

posing less computation burden.

Based on the above observations, we design fMTD as follows.

When the system has spare computing resources, it adds indepen-

dent perturbations to the parameters of the base model to gener-

ate multiple fork models. The base model can be a well factory-

designed deep model that gives certified accuracy for clean exam-

ples, but may be acquired by the attackers. Each fork model is then

used as the starting point of a retraining process. The retrained

fork models are then commissioned for the visual sensing task. As

the forkmodels are retrained from the base model, intuitively, they

will inherit much of the classification capability of the base model

for clean examples. At run time, an input, which may be an ad-

versarial example constructed based on the base model, is fed into

each fork model. If the degree of inconsistency among the fork

models’ outputs exceeds a predefined level, the input is detected as

an adversarial example. The majority of the fork models’ outputs

is yielded as the final result of the sensing task. If the system oper-

ates in the human-in-the-loop mode, the human will be requested

to classify detected adversarial examples. The human inference

can be used because of the following two factors. First, as human

perception can be considered immune to adversarial examples, its

on-demand use can improve the system’s performance in thwart-

ing the attack. Second, the admission of human inputs is also con-

sistent with the design of existing off-the-shelf ADAS that require

human driver’s continuous monitoring of road environment and

intervention when necessary.

The run-time inference overhead of fMTD is proportional to the

number of fork models used. Based on our performance profil-

ing on NVIDIA Jetson AGX Xavier and Jetson Nano, which are

two GPU-equipped embedded computing platforms with different

computing resources, instructing TensorFlow to execute the fork

models at the same time brings limited benefit in shortening in-

ference time. In contrast, the serial execution of them admits an

early stopping mechanism inspired by the serial signal detection

[58]. Specifically, the system runs the fork models in serial and ter-

minates the execution once sufficient confidence is accumulated

to decide the cleanness of the input. Evaluation results show that
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the serial fMTD reduces the inference time by a factor of up to 5

compared with instructing TensorFlow to execute all fork models.

The contributions of this paper are summarized as follows.

• Based on important observations on the responses of deep

models to adversarial examples, we design fMTD to coun-

teract adversarial example attacks as an ongoing concern.

• We conduct extensive evaluation on fMTD’s accuracy in

classifying clean examples as well as its performance in de-

tecting and thwarting adversarial examples under a wide

range of settings. The results provide useful guidelines for

adopters of fMTD in specific applications.

• We show that the serial execution of the fork models with

early stopping can significantly reduce the inference time of

fMTD while maintaining the sensing accuracy in both the

absence and presence of attacks.

The reminder of this paper is organized as follows. §2 reviews

background and related work. §3 presents a measurement study

to motivate the fMTD design. §4 designs fMTD. §5 evaluates the

accuracy and attack detection performance of fMTD. §6 profiles

fMTD on Jetson and evaluates the serial fMTD. §7 discusses several

issues not addressed in this paper. §8 concludes this paper.

2 BACKGROUND AND RELATED WORK

2.1 Adversarial Examples and Construction

Adversarial examples are crafted inputs to mislead deep models to

produce incorrect results. Let fθ (x) denote a classifier, where θ is

the classifier’s parameter and x ∈ [0, 1]m is the input (e.g., an im-

age). Let y denote the ground truth label of x. The x′ = x + δ ∈

[0, 1]m is an adversarial example, if fθ (x
′) , y. The δ is the pertur-

bation designed by the attackers. A targeted adversarial example

x
′ makes fθ (x

′) = yt , where yt , y is a specified target label. A

non-targeted adversarial example ensures that the classification re-

sult fθ (x
′) is an arbitrary label other than the true label y. If the

attackers need no knowledge of the classifier’s internals (e.g., ar-

chitecture, hyperparameters, and parameters) to construct the ad-

versarial example, the attack is called black-box attack. Otherwise,

it is called white-box attack. In this work, we consider both tar-

geted and non-targeted adversarial examples. As the objective of

this paper is to develop a defense approach, it is beneficial to con-

sider the stronger white-box attack, in which the attackers have

the knowledge of the internals of the base model.

To increase the stealthiness of the attack to human perception,

the difference between x and x′, denoted by D(x, x′), is to be mini-

mized. Thus, the construction of the perturbation for a targeted ad-

versarial example, denoted byδ∗
yt , can be formulated as [68]:δ∗

yt =

argminδ D(x, x′), subject to fθ (x
′) = yt and x

′ ∈ [0, 1]m . The tar-

geted adversarial example that gives the minimum D(x, x′) can be

yielded as a non-targeted adversarial example. Various gradient-

based approaches have been proposed to construct adversarial ex-

amples [6, 14, 15, 27, 39, 49, 50, 56, 61, 67, 68]. Among them, the

approach proposed by Carlini and Wagner (C&W) [14] is often

thought highly effective and used to evaluate various defense ap-

proaches [3]. We briefly introduce it here. C&W’s approach in-

stantiates the distance to be ℓp -norm and apply Lagrangian relax-

ation to simplify the formulation as: δ∗yt = argminδ ‖δ ‖p + c ·

д(x′), subject to x
′ ∈ [0, 1]m , where the regularization д(x′) =

max
{

maxyi,yt
{

Z (x′)yi
}

− Z (x′)yt ,−κ
}

, Z (·) represents softmax

and κ is a parameter controlling the strength of the constructed

adversarial example. With a larger κ , the x′ is more likely classi-

fied as yt , but the perturbationδ will be larger. In the inner loop of

C&W’s algorithm for a certain weight c , gradient descent is used

to solve the relaxed formulation. In the outer loop, binary search

is applied to find a setting for c to further minimize the objective

function. In this paper, we use C&W’s approach to generate adver-

sarial examples and evaluate fMTD. Note that the design of fMTD

does not rely on any specifics of the C&W’s approach.

2.2 Countermeasures to Adversarial Examples

Overfitted models are often thought highly vulnerable to adversar-

ial example attacks. However, regularization approaches for pre-

venting overfitting, such as dropout and weight decay, are shown

ineffective in precluding adversarial examples [27, 68]. Brute-force

adversarial training [27, 37, 47] can make a deep model immune to

predefined adversarial examples. However, it can be defeated by

the adversarial examples that are not considered during the adver-

sarial training. A range of other defense approaches apply various

transformations to the input during both the training and inference

phases. The transformations include compression [8, 16, 17, 21, 29],

cropping and foveation [29, 46], data randomization [75], and data

augmentation [77]. These approaches often lead to accuracy drops

on clean examples [76] and are only effective against the adversar-

ial examples constructed without the knowledge of the transfor-

mation. Gradient masking is another category of defense against

the adversarial examples constructed using gradient-based meth-

ods [11, 57, 60, 65]. It attempts to deny adversary access to use-

ful gradients for constructing attack. However, as shown in [5], if

the attackers know the details of the transformation or the gradi-

ent masking, they can still construct effective adversarial examples.

Provable defense [20, 59, 74] gives lower bounds of the defense ro-

bustness. However, its key limitation is that the lower bound is

applicable for a set of specific adversarial examples only.

The key difference between our approach and the existing ap-

proaches is that ours is a dynamic defense while existing approaches

are static defenses. As pointed out by [12], a main drawback of

most existing attack prevention and thwarting approaches against

adversarial examples is that they do not consider adaptive attack-

ers. Once the attackers acquire the details of the defense, the attack-

ers can design the next-generation adversarial examples and by-

pass the defense. In other words, these approaches’ effectiveness is

contingent on the attacker’s ignorance of the defense mechanism.

Differently, our approach applies dynamic deep models to signif-

icantly increase the barrier for the attacker to craft effective ad-

versarial examples. Our approach is supplementary to the existing

defense approaches, in that our approach takes effect during the

run time of the protected system, whereas the existing approaches

are applied during the design phase of the system.

In addition to attack prevention and thwarting, adversarial ex-

ample detection has also received research. For example, a second

classifier can be built to classify an input as clean or adversarial

[26, 45, 48]. Statistical properties of the inputs such as principle
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component have been used to detect attacks [7, 33, 43]. Others re-

sort to statistical testing [25, 28]. However, these approaches can-

not detect crafty attacks such as the C&W’s attack [13].

2.3 Moving Target Defense

Static defense grants attackers the advantage of time. MTD is an

emerging approach to address this issue and increase the barrier

for effective attacks [35]. For instance, the computer hosts can mu-

tate their IP addresses such that the attack traffic is directed to

wrong destinations [4]. In the approach described in [62], a deep

model is randomly selected from a set of candidate models each

time to classify an input. The approach uses a limited number of

candidatemodels (e.g., 3 to 6 [62]) and assumes that they are known

to the attackers. Its effectiveness of thwarting the attacks is merely

based on the attackers’ ignorance of which model is being used,

thus following a weak form of MTD. Given the limited number

of candidate models, it is not impossible for the attackers to con-

struct an adversarial example that can mislead all candidate mod-

els. Moreover, the approach [62] is short of attack detection capa-

bility since a single model is used each time. In contrast, fMTD

applies an ensemble of locally generated deep models to achieve

both attack detection and thwarting capabilities. Thus, fMTD fol-

lows a strong form of MTD.

3 MEASUREMENT STUDY

We conduct measurements to gain insights for MTD design.

3.1 Used Datasets and Deep Models

We first introduce the datasets and the deep models used in this

measurement study as well as the extensive performance evalua-

tion for fMTD in §5. We use the following three datasets:

• MNIST [42] is a dataset consisting of 60,000 training sam-

ples and 10,000 test samples. Each sample is a 28×28 grayscale

image showing a handwritten digit from 0 to 9. We select

5,000 training samples as the validation dataset.

• CIFAR-10 [38] is a 10-class dataset consisting of 50,000 train-

ing samples and 10,000 test samples. Each sample is a 32×32

RGB color image. The 10 classes are airplanes, cars, birds,

cats, deers, dogs, frogs, horses, ships, and trucks. We select

5,000 training samples as the validation dataset.

• GTSRB [66] (German Traffic Sign Recognition Benchmark)

is a 43-class dataset with more than 50,000 images sizing

from 15× 15 to 250× 250 pixels. For convenience, we resize

all the images to 32 × 32 pixels by interpolation or down-

sampling. We divide them into training, validation, and test

datasets with 34799, 4410, and 12630 samples, respectively.

We adopt two convolutional neural network (CNN) architec-

tures that have been used in [14] and [57], referred to as CNN-A

and CNN-B. Their structures and training hyperparameters can be

found in [64]. We apply CNN-A to MNIST. It is trained on MNIST

using the momentum-based stochastic gradient descent. CNN-A

achieves training and validation accuracy of 99.84% and 99.44%,

respectively. We apply CNN-B to CIFAR-10 and GTSRB. CNN-B’s

main difference from CNN-A is that more convolutional filters and

more rectified linear units (ReLUs) in the fully connected layers are

Table 1: Targeted adversarial examples constructed using

C&W approach [14] with ℓ2-norm and various κ settings.

Clean Attack’s target label

example 2 3 2 3 2 3

G
ro
u
n
d
tr
u
th

la
b
el

0
1

κ = 0 κ = 45 κ = 95

used to address themore complex patterns of the CIFAR-10 and GT-

SRB images. Its softmax layer has 10 or 43 classes for CIFAR-10 and

GTSRB, respectively. For CIFAR-10, CNN-B achieves a validation

accuracy of 79.62%. This result is consistent with those obtained in

[14] and [57]. For GTSRB, CNN-B achieves training and validation

accuracy of 99.93% and 96.64%, respectively.

TheMNIST and CIFAR-10 datasets have been widely used in im-

age recognition and machine learning research. The use of these

two datasets allows us to adopt the CNN architectures that have

been shown suitable for them. From the achieved training and val-

idation accuracy, MNIST and CIFAR-10 are representatives of data

with simple and complex patterns, respectively. GTSRB gives re-

alism since road sign recognition must be part of ADAS’s visual

sensing. However, this study does not cater to any specific applica-

tion. While the detailed results (e.g., classification accuracy) may

differ across datasets, we will draw common observations from the

results obtained based on these three datasets.

3.2 Measurement Results

In this section, we conduct measurements to investigate the re-

sponses ofmultiplenewmodels to adversarial examples constructed

based on the base model that is different from the new models.

3.2.1 Adversarial examples. We use the deep models described in

§3.1 as the base models for the three datasets. Then, we use the

C&W approach described in §2.1 to generate adversarial exam-

ples based on the base model. Specifically, for each dataset, we se-

lect a clean test sample in each class as the basis for constructing

the targeted adversarial examples whose targeted labels are the re-

maining classes. For instance, as MNIST has 10 classes, a total of

10 × 9 = 90 targeted adversarial examples will be generated. To

generate non-targeted adversarial examples for each dataset, we

randomly select 100 test samples as the bases for the construction

by following the procedure described in §2.1. The C&W’s adver-

sarial examples are highly effective – all adversarial examples that

we generate are effective against the base model.

As described in §2.1, the κ is an important parameter of the

C&W’s approach that controls the trade-off between the effective-

ness of the attack and the distortion introduced. We vary κ from

0 to 95. The first image column of Table 1 shows two clean ex-

amples from MNIST. The rest image columns show a number of

targeted adversarial examples constructed with three settings of

κ . For instance, all images in the second column will be wrongly

classified by the base model as ‘2’. We can see that with κ = 0, the

perturbations introduced by the attack are almost imperceptible to
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Table 2: Attack success

rate (ASR).

MNIST 6.72%

CIFAR-10 17.3%

GTSRB 7.17%
∗ κ = 0.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

A
S

R

Distortion

Figure 1: ASR vs. distortion.

human eyes without referring to the clean examples. With κ = 45,

there are clear distortions. With κ = 95, the perturbations may

completely erase the figure shapes or create random shapes. More

MNIST adversarial examples are presented in [64].

In the rest of this paper, for the sake of attack stealthiness to

human, we adopt κ = 0 unless otherwise specified. To confirm the

effectiveness of the adversarial examples with κ = 0, we conduct

an extended experiment with 1,000 targeted adversarial examples

of κ = 0 for MNIST (900 of them are based on ℓ2-norm, whereas

the remaining are based on ℓ0- and ℓ∞-norm). All these 1,000 ad-

versarial examples are effective against the base model.

3.2.2 Transferability of adversarial examples. In this set of mea-

surements, for each dataset, we train a new model that has the

same architecture as the base model. Then, we measure the attack

success rate (ASR) of the adversarial examples on the new model.

An adversarial example is successful if the deep model yields a

wrong label. The ASR characterizes the transferability of the ad-

versarial examples to a model differing from the one used for their

construction. Table 2 shows the ASR for the three datasets. We can

see that the adversarial examples constructed using the basemodel

can still mislead the new model with probabilities from 7% to 17%.

This suggests that the adversarial examples have some transferabil-

ity across different deep models with the same architecture.

We also evaluate the transferability of the adversarial examples

constructed with different κ settings. We use the Euclidean dis-

tance between the adversarial example x
′ and its corresponding

clean example x to characterize the distortion caused by the ad-

versarial perturbation. A larger κ will result in a larger distortion

and thus less stealthiness of the attack to human perception. Fig. 1

shows the ASR versus distortion for CIFAR-10. We can see that

the ASR increases with the distortion. This shows the trade-off be-

tween the attack’s transferability and stealthiness to human.

3.2.3 Outputs of multiple new models. From §3.2.2, adversarial ex-

amples have non-negligible transferability to a new model. Thus,

using a single new model may not thwart adversarial example at-

tacks. In this set of measurements, we study the outputs of multi-

ple new models.With the base model for each of the three datasets,

we construct 270 targeted adversarial examples (i.e., 90 examples

based on each of the ℓ0, ℓ2, and ℓ∞ norms) and 300 non-targeted

adversarial examples (i.e., 100 examples based on each of the three

norms). For each of the three datasets, we independently train 20

new models. We denote by D the number of distinct outputs of

the 20 models given an adversarial example. Fig. 2 shows the his-

togram ofD. From the figure, the probability thatD is greater than

one is 51%. This means that, by simply checking the consistency

of the 20 models’ outputs, we can detect half of the adversarial ex-

ample attacks. The probability that D = 1 is 49%, which is the

probability of all the 20 new models giving the same output when

0

0.1

0.2

0.3

0.4

0.5

1 2 3 4 5 6 7 8 9 10

P
ro

b
ab

il
it

y

The number of distinct outputs

Figure 2: Distribution of the

number of distinct outputs

of 20 new models given an

adversarial example built us-

ing the base model.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0 1 2 3 4 5 6 7 8 9

P
ro

b
ab

il
it

y

Output class label

Figure 3: Distribution of 20

new models’ outputs given

an adversarial example with

ground truth label of 1 and

attack target label of 0.

Table 3: The number of epochs for new model retraining.

Intensity of Dataset

perturbation (w) MNIST CIFAR-10 GTSRB

0.1 11 11 12

0.2 12 13 13

0.3 13 18 13

training from scratch 23 44 22

the input is an adversarial example. It is also the probability that

the consistency check cannot detect whether the input is an adver-

sarial example. Moreover, 99.5% of the adversarial examples that

result in D = 1 fail to mislead any new model (i.e., all the 20 new

models yield the correct classification results). This result suggests

that, when the input is an adversarial example, even if the consis-

tency check does not detect whether the input is an adversarial

example, a majority voting by the 20 new models can give correct

classification result with a probability of 99.5%.

We now use an example to illustrate whether an adversarial ex-

ample resulting in D > 1 can be thwarted. Fig. 3 shows the his-

togram of the 20 new models’ outputs given a targeted CIFAR-10

adversarial example with a ground truth label of 1 and a target la-

bel of 0. We can see that most new models yield the ground truth

label and only a few models yield labels rather than the attack’s

target label. This shows that the wrong outputs of the new mod-

els tend to be unpredictable, rather than the attack’s target label.

It also suggests that a majority voting from the distinct outputs of

the new models can thwart the attack.

3.2.4 Retraining perturbed base model. The results in §3.2.3 sug-

gest that an ensemble of multiple new models is promising for de-

tecting and thwarting adversarial example attacks. However, the

training of the newmodelsmay incur significant computationover-

head. In this section, we investigate a retraining approach. Specifi-

cally, we add perturbations to the well trained base model and use

the result as the starting point of a retraining process to generate a

new model. The model perturbation is as follows. For each param-

eter matrix M of the base model, we add an independent pertur-

bation to each element inM. The perturbation is drawn randomly

and uniformly from [w ·min(M),w ·max(M)], where min(M) and

max(M) represent the smallest and largest elements of M, respec-

tively, and w controls the intensity of the perturbation. The sys-

tem stops the retraining process if the validation accuracy stops
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increasing for five consecutive epochs. Then, the model in the re-

training epoch that gives the highest validation accuracy is yielded

as a new model. To ensure that the accuracy of the new mod-

els is comparable to that of the base model, the stopping criterion

can be improved by integrating an additional condition: the differ-

ence between a candidate newmodel’s validation accuracy and the

base model’s validation accuracy is smaller than a threshold. If the

retraining of a new model cannot meet the above condition, we

should drop the current candidate new model and continue to re-

train the next new model. In this paper, we retrain the new models

with all the training data used for training the base model. Table 3

shows the number of epochs for retraining a new model versus

the intensity of the perturbation. We can see that the number of

epochs increases with the perturbation intensity. As a comparison,

when a new model is trained from scratch with the same stopping

criterion, the number of epochs can be up to 4x higher than that

with w = 0.1. We measure the time for retraining 20 new models

from perturbed versions of the base model using the entire GTSRB

training dataset consisting of 34,799 images on the NVIDIA Jetson

AGX Xavier computing board. It takes about 45 minutes.

4 DESIGN OF FMTD

The measurement results in §3 suggest an MTD design to coun-

teract adversarial examples. In brief, multiple fork models can be

generated dynamically by retraining independently perturbed ver-

sions of the base model. A consistency check on the fork models’

outputs can detect whether the input is an adversarial example;

the majority of their outputs can be yielded as the final classifica-

tion result to thwart the adversarial example attack if present. In

this section, we will formally present the system and threat mod-

els (§4.1), fMTD design (§4.2), and the metrics characterizing the

performance of fMTD (§4.3).

4.1 System and Threat Models

Consider an embedded visual sensing system (“the system” for

short), which can execute the inference and the training of the

used deep model. In this paper, we focus on a single image classifi-

cation task. Image classification is a basic building block of many

visual sensing systems. The classification results can be used to di-

rect the system’s actuation. We assume that the system has a well

factory-designed model that gives certified accuracy on clean ex-

amples and specified adversarial examples. The system also has a

training dataset that can be used to train a new deep model locally

that achieves a satisfactory classification accuracy as that given by

the factory model. Moreover, we make the following two notes re-

garding the connection of this paper’s focus of image classification

with the overall visual sensing system in real-world applications.

First, the input to the image classifier may be a cropped area of

the original image captured by a camera that contains the object of

interest (e.g., the road sign). The cropping can be achieved based

on object detection and image segmentation that have received ex-

tensive study in computer vision literature [53]. In this paper, we

focus on addressing the adversarial example attacks on the classi-

fication task that takes the cropped image as the input. We assume

that the object detection and image segmentation work normally.

Second, some visual sensing systems process a stream of im-

age frames by classifying the individual frames independently and

then fusing the classification results over time to yield a final re-

sult [31, 70]. In this paper, we focus on the classification of a sin-

gle image. The attack-proof classification of individual frames will

ensure the robustness of the temporal fusion of the classification

results. Some other visual sensing systems may take a sequence of

image frames as a one-shot input to the deep model [10, 19]. Our

MTD approach is also applicable in this setting, since its design

does not require specific structure of the deep model’s input.

We assume that the attackers cannot corrupt the system. Given

that the factory model is static, we assume that the attackers can

acquire it via memory extraction, data exfiltration attack, or in-

siders (e.g., unsatisfied or socially engineered employees). We also

assume that the attackers can acquire the training dataset on the

system, since the dataset is also a static factory setting. We assume

that the attackers can construct stealthy targeted or non-targeted

adversarial examples with awhite-box approach (e.g., the C&Wap-

proach [14]) based on the factory model or any deepmodel trained

by the attackers using the dataset. Since the focus of this paper is

to develop a defense approach, it is beneficial to conservatively

consider strong attackers who can launch white-box attacks. This

conforms to Kerckhoffs’s principle well.

We assume that the system can generate random numbers lo-

cally at run time that cannot be acquired by the attackers, although

the attackers can know the probabilistic distributions of these ran-

dom numbers. Truly random number generation can be costly and

difficult. Various secure pseudo-random number generation meth-

ods can be used instead to achieve practical confidentiality from

the attackers. The pseudo-random numbers will be used to perturb

the base model and generate fork models. As such, the attackers

cannot acquire the exact fork models.

Finally, we assume that the attackers can deploy the adversarial

examples, e.g., to paste adversarial paper stickers on road signs.

4.2 fMTDWork Flow

Fig. 4 overviews the work flow of fMTD. We consider two oper-

ating modes of fMTD: autonomous and human-in-the-loop. Both

modes have the following three components.

4.2.1 Fork models generation. To “move the target”, the system

generates new deepmodels locally for the image classification task.

Specifically, we adopt the approach described in §3.2.4 to perturb

the base model with a specified intensity level w and retrain the

perturbed model using the training data to generate a fork model.

The retraining completeswhen the validation accuracymeets a cer-

tain criterion. Using the above procedure, a total of N fork models

are generated independently. We now discuss several issues.

From our evaluation results in §5, a larger setting of N in gen-

eral leads to better performance in counteracting the adversarial

example attack. Therefore, the largest setting subject to the com-

putation resource constraints and run-time inference timeliness re-

quirements can be adopted. In §6, we will investigate the run-time

overhead of the fork models.

The fork models generation can be performed right after receiv-

ing each new release of the factory-designed model from the sys-

tem manufacturer. For example, as measured in §3.2.4, generating
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Figure 4: Workflow of fMTD. In the autonomous mode, the

attack thwartingmodule is executed regardless of the attack

detection result. In the human-in-the-loopmode, the attack

thwarting module is executed only when the attack detec-

tion gives a positive detection result.

20 fork models for road sign recognition requires 45 minutes only.

To further improve the system’s security, the fork models genera-

tion can also be performed periodically or continuously whenever

the computing unit of the system is idle. For instance, an electric

car can perform the generation when it is being charged during

nights. A newly generated fork model can replace the oldest one

among the N fork models.

Since the fork model is retrained from a perturbed version of

the base model, the fork model may converge to the base model.

However, as the stochastic gradient descent used in the training

also incorporates randomness and a deep model often has a large

degree of freedom, with a sufficient perturbation intensity levelw ,

the fork model is most unlikely identical to the base model. From

a rigorous perspective of information security, the attackers still

have a certain amount of information about the fork model since

they have the base model and can know the mechanisms of per-

turbation and retraining. Thus, the ensemble of the fork models

should be viewed as a quasi-secret of the system only. Neverthe-

less, MTD is not meant for perfect security, but for significantly

increased barriers for the attackers to launch effective attacks.

4.2.2 A�ack detection. An input is sent to all fork models for clas-

sification. From the observations in §3.2.3, we can check the con-

sistency of the outputs of all the fork models to detect whether

the input is an adversarial example. If more than T × 100% of the

outputs are the same, the input is detected as a clean example; oth-

erwise, it is detected as an adversarial example. Noted that T is

a threshold that can be configured to achieve various satisfactory

trade-offs. We will evaluate the impact ofT on the performance of

the system and discuss its setting in §5.

4.2.3 A�ack thwarting. Attack thwarting aims to give the genuine

label of an adversarial example. From the observations in §3.2.3, we

apply the majority rule to thwart the adversarial example attack.

Specifically, the most frequent label among theN fork models’ out-

puts is yielded as the final result.

In the autonomous mode, regardless of the attack detection re-

sult, the system will execute the attack thwarting component to

generate the final result for the autonomous actuation of the sys-

tem. Differently, in the human-in-the-loop mode, upon a detection

of adversarial example, the system will ask the human operator to
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Figure 5: Categorizationof the system’s attack detection and

thwarting results and the evaluation metrics. The shaded

blocks of “Failed thwarting” and “Wrong output” are not ap-

plicable to human-in-the-loop fMTD.

classify the input and use the result for the system’s subsequent ac-

tuation; if no attack is detected, the system will execute the attack

thwarting component to yield the final classification result for the

subsequent actuation. In this paper, we assume that the human op-

erator will not make any classification error. With this assumption,

our performance metrics analysis (§4.3) and evaluation (§5) will

provide essential understanding on how the human operator’s in-

volvement enabled by fMTD’s attack detection capability improves

the system’s safety in the presence of attacks. Moreover, since the

construction of the adversarial examples follows the perturbation

minimization principle to remain imperceptible to human eyes, it

is also reasonable to assume that the human operatorwill not make

attack-induced classification error. Nevertheless, our performance

metric analysis and evaluation can be easily extended to address

human operator’s certain error rates when they are non-negligible.

We study both the autonomous and human-in-the-loop modes

to understand how the involvement of human affects the system’s

performance in the absence and presence of adversarial example

attacks. Fully autonomous safety-critical systems in complex en-

vironments (e.g., self-driving cars) are still grand challenges. For

example, all existing off-the-shelf ADAS still requires the driver’s

supervision throughput the driving process. In this paper, we use

the results of the autonomous mode as a baseline. For either the

autonomous or the human-in-the-loop modes, effective counter-

measures against adversarial examples must be developed and de-

ployed to achieve trustworthy systems with advancing autonomy.

4.3 Performance Metrics

In this section, we analyze themetrics for characterizing the perfor-

mance of fMTD in the autonomous and human-in-the-loop modes.

Fig. 5 illustrates the categorization of the system’s detection and

thwarting results. In the following, we use x to refer to a block

numbered by x in Fig. 5. In §5, we use px to denote the probabil-

ity of the event described by the block conditioned on the event

described by the precedent block. We will illustrate px shortly.
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Attack’s target label

0 1 2 3 4 5 6 7 8 9

1
5

Figure 6: Targeted adversarial examples constructed using

C&W approach [14] with ℓ2-norm. Each row consists of ad-

versarial examples generated from the same clean example.

When the ground truth of the input is an adversarial example,

it may be detected correctly 1 or missed 2 . Thus, we use p1 and

p2 to denote the true positive and false negative rates in attack

detection. We now further discuss the two cases of true positive

and false negative:

• In case of 1 , the autonomous fMTD may succeed 3 or

fail 4 in thwarting the attack; differently, the human-in-the

loop fMTD can always thwart the attack 3 . Note that when

the attack thwarting is successful, the system will yield the

correct classification result; otherwise, the system will yield

a wrong classification result.

• In case of 2 , the autonomous or human-in-the-loop fMTD

may succeed 5 or fail 6 in thwarting the attack.

The successful defense rate 13 is the sum of the probabilities for 3

and 5 . The attack success rate 14 is the sum of the probabilities

for 4 and 6 . Note that, with the autonomous fMTD, the two rates

are independent of fMTD’s detection performance, because the at-

tack thwarting component is always executed regardless of the de-

tection result. In contrast, with the human-in-the-loop fMTD, the

two rates depend on fMTD’s attack detection performance. In §5,

we will evaluate the impact of the attack detection performance on

the two rates.

When the ground truth of the input is a clean example, the de-

tector may generate a false positive 7 or a true negative 8 .

• In case of 7 , the attack thwarting of the autonomous fMTD

may yield a correct 9 or wrong 10 classification result;

differently, the human-in-the-loop fMTD can always give

the correct classification result.

• In case of 8 , the attack thwarting of the autonomous or

human-in-the-loop fMTDmay yield a correct 11 or wrong

12 classification result.

The accuracy of the system in the absence of attack 15 is the sum

of the probabilities for 9 and 11 .

For fMTD, the successful defense rate p13 and the accuracy p15
are the main metrics that characterize the system’s performance

in the presence and absence of attacks. In the autonomous mode,

these two metrics are independent of the attack detection perfor-

mance. Differently, in the human-in-the-loop mode, they are af-

fected by the attack detection performance. In an extreme case,

if the detector always gives positive detection results, the human

will take over the classification task every time to give the correct

results, causing lots of unnecessary burden to the human in the

absence of attack. This unnecessary burden can be characterized

by the false positive rate p7. There exists a trade-off between this

unnecessary burden to human and the system’s performance. In
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Figure 7: False positive rate of attack detection (p7).

summary, the performance of the autonomous fMTD and human-

in-the-loop fMTD can be mainly characterized by the tuples of

(p13,p15) and (p7,p13,p15), respectively.

5 PERFORMANCE EVALUATION

In this section, we extensively evaluate fMTD in terms of the per-

formance metrics described in §4.3.

5.1 Evaluation Methodology and Settings

The evaluation is also based on the three datasets and the two CNN

infrastructures described in §3.1.We follow the approach described

in §3.2.1 to generate the adversarial examples. Fig. 6 shows adver-

sarial examples based on two clean GTSRB examples with labels

of “1” and “5”. The second image in the first row and the sixth im-

age in the second row are clean examples. We can see that the ad-

versarial perturbations are imperceptible. More GTSRB adversarial

examples are shown in [64]. The fMTD has three configurable pa-

rameters: the number of fork models N , the model perturbation

intensityw , and the attack detection thresholdT . Their default set-

tings are:N = 20,w = 0.2,T = 1 (i.e., the attack detector will alarm

if there is any inconsistency among the fork models’ outputs).

5.2 Results in the Absence of Attack

The deployment of the defense should not downgrade the system’s

sensing accuracy in the absence of attack. This section evaluates

this sensing accuracy. All clean test samples are used to measure

the probabilities in the bottom part of Fig. 5.

First, we use all the clean test samples to evaluate the false posi-

tive rate (i.e., p7) of the attack detection. Fig. 7 shows the measured

p7 versusN under variousw settings. Thep7 increases withN . This

is because, with more fork models, it will be more likely that the

fork models give inconsistent results. Moreover, p7 increases with

w . This is because, with a higher model perturbation level, the re-

trained fork models are likely more different and thus give differ-

ent results to trigger the attack detection. The p7 for CIFAR-10 is

more than 20%. Such a high p7 is caused by the high complexity

of the CIFAR-10 images. Moreover, the detector withT = 1 is very

sensitive. With a smaller T , the p7 will reduce. For instance, with

T = 0.6, p7 is around 5%-10%.

Fig. 8 shows the accuracy of the system in the absence of at-

tack (i.e., p15) versus N under various w settings. The curves la-

beled “scratch” represent the results obtained based on new mod-

els trained from scratch, rather than fork models. We can see that

training from scratch brings insignificant (less than 2%) accuracy
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Figure 8: Accuracy of the system in the absence of attack

(p15). The horizontal lines represent the validation accuracy

of the respective base models.
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Figure 9: Performance of human-in-the-loop fMTD in the

absence of attack. (Dataset: GTSRB)

improvement. The horizontal lines in Fig. 8 represent the valida-

tion accuracy of the respective base models. We can see that due

to the adoption of multiple deep models, the system’s accuracy is

improved. This is consistent with the understanding from the deci-

sion fusion theory [71]. The results also show that larger settings

forN bring insignificant accuracy improvement. Reasons are as fol-

lows. First, for MNIST and GTSRB, as the accuracy of a single fork

model is already high, the decision fusion based on the majority

rule cannot improve the accuracy much. Second, for CIFAR-10, al-

though the accuracy of a single fork model is not high (about 80%),

the high correlations among the fork models’ outputs impede the

effectiveness of decision fusion. The accuracy p15 depends on the

rates that the attack thwarting module gives correct output for the

false positives and true negatives, i.e., p9 and p11. More results on

p9 and p11 can be found in [64].

From Fig. 8c, the accuracy of the road sign recognition is around

97%. The original images in GTSRB have varied resolutions. To fa-

cilitate our evaluation, we resized all the images to 32 × 32 pixels.

This low resolution contributes to the 3% error rate. With higher

resolutions, this error rate can be further reduced. The main pur-

pose of this evaluation is to show that, in the absence of attacks,

fMTD can retain or slightly improve the system’s accuracy ob-

tained with the base model. Note that statistical data released by

car manufacturers show that ADAS helps reduce safety incident

rates [69, 73], implying the high accuracy of ADAS’s visual sens-

ing in the absence of attacks.

Lastly, we consider the human-in-the-loop fMTD. Fig. 9 shows

the results based on GTSRB. Specifically, Fig. 9a shows the false

positive rate p7 versus N under various settings for the detection

threshold T . The p7 decreases with T , since the attack detector
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Figure 10: True positive rate of attack detection (p1).
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Figure 11: Rate of thwarting detected attacks (p3).

becomes less sensitive with smaller T settings. The p7 character-

izes the overhead incurred to the human who will make the man-

ual classification when the attack detector raises an alarm. Fig. 9b

shows the accuracy p15 versus N under various T settings. The

curve labeled “auto” is the result for the autonomous fMTD. We

can see that the human-in-the-loop fMTDwithT = 1 outperforms

the autonomous fMTD by up to 3% accuracy, bringing the accu-

racy close to 100%. From Fig. 9a and Fig. 9b, we can see a trade-off

between the overhead incurred to and the accuracy improvement

brought by the human in the loop. To better illustrate this trade-

off, Fig. 9c shows the accuracy versus the false positive rate under

various model perturbation intensity settings. Different points on

a curve are the results obtained with different settings of the at-

tack detection threshold T . We can clearly see that the accuracy

increases with the false positive rate.

5.3 Results in the Presence of Attack

We use the targeted adversarial examples to evaluate the perfor-

mance of fMTD in detecting and thwarting attacks. Fig. 10 shows

the true positive rate (i.e., p1) versus N under various settings ofw .

For the three datasets, the p1 increases from around 50% to more

than 90% when N increases from 3 to 20. This shows that, due to

the minor transferability of adversarial examples, increasing the

number of fork models is very effective in improving the attack

detection performance. For GTSRB, when w = 0.3, all attacks can

be detected as long as N is greater than 3.

Fig. 11 and Fig. 12 show the rates of successfully thwarting the

detected attacks (i.e., p3) and the missed attacks (i.e., p5), respec-

tively. In general, these rates increase withN . From the two figures,

fMTD is more effective in thwarting themissed attacks than the de-

tected attacks. This is because, for a missed attack, all fork models

give the same and correct classification result. However, for the de-

tected attacks, all fork models’ results are inconsistent and there is

a chance for the majority among the results is a wrong classifica-

tion result. From Fig. 11a, MNIST has a relatively low p3. This is
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Figure 12: Rate of successfully thwartingmissed attacks (p5).
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Figure 13: Successful defense rate (p13).

because under the same setting of κ = 0, the MNIST adversarial ex-

amples have larger distortions. The average distortions introduced

by the malicious perturbations, as defined in §3.2.1, are 1.9 and 0.4

for MNIST and CIFAR-10, respectively. Thus, the strengths of the

malicious perturbations applied on MNIST are higher, leading to

the lower attack thwarting rates in Fig. 11a.

Fig. 13 shows the successful defense rate (i.e., p13) versusN . The

p13 has an increasing trend with N . The curves labeled “scratch”

represent the results obtainedwith newmodels trained from scratch

rather than fork models. The fMTD achieves successful defense of

98%withw = 0.3 for CIFAR-10 andw = 0.5 for GTSRB.MNIST has

relatively low success defense rates due to the relatively low rates

of successfully thwarting detected attacks as shown in Fig. 11a.

However, with new models trained from scratch, the success de-

fense rates for MNIST are nearly 100%. The higher success defense

rates achieved by the new models trained from scratch are due to

the lower transferability of adversarial examples to such models.

However, training from scratch will incur higher (up to 4x) com-

putation overhead. Thus, there is a trade-off between the attack

defense performance and the training computation overhead. We

will further discuss this issue in §7.

Lastly, we evaluate how the human improves the attack thwart-

ing performance when fMTD operates in the human-in-the-loop

mode. Fig. 14 shows the results based on GTSRB. With a larger T

setting (i.e., the detector is more sensitive), the true positive rate in-

creases, requesting more frequent manual classification by the hu-

man. As a result, the successful defense rate can increase to 100%,

higher than that of the autonomous fMTD. Recalling the results

in Fig. 9a, a larger T leads to higher false positive rates and thus

higher unnecessary overhead incurred to the human. Thus, there

exists a trade-off between the successful defense rate and the un-

necessary overhead incurred to the human. To better illustrate this

trade-off, Fig. 14c shows the successful defense rate versus the false

positive rate. Different points on a curve are the results obtained
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Figure 14: True positive rate and successful defense rate in

the human-in-the-loop mode. (Dataset: GTSRB)

with different settings of T . We can clearly see that the successful

defense rate increases with the false positive rate.

5.4 Summary and Implication of Results

First, from Fig. 8, in the absence of attack, autonomous fMTD does

not improve the classification accuracy much when the number of

fork models N increases. Differently, from Fig. 13, autonomous

fMTD’s successful defense rate can be substantially improvedwhen

N increases. Note that, without fMTD, the adversarial example

attacks against the static base model are always successful. This

clearly suggests the necessity of deploying countermeasures.

Second, there exists a trade-off between the successful defense

rate and the computation overhead in generating the fork mod-

els. Specifically, with more fork models retrained from the base

model with larger model perturbation intensity (w), higher suc-

cessful defense rates can be achieved. However, the retraining will

have higher computation overhead as shown in Table 3. From the

results in Fig. 13, training the new models from scratch gives near-

perfect defense performance. However, it incurs computation over-

head several times higher than our model forking approach.

Third, the proposed human-in-the-loop design enables the sys-

tem to leverage the human’s immunity to stealthy adversarial ex-

amples. The on-demand involvement of human improves the sys-

tem’s accuracy in the absence of attack and the successful defense

rate in the presence of attack, with an overhead incurred to the

human that is characterized by the false positive rate. From Fig. 9c

and Fig. 14c for the GTSRB road sign dataset, with a false positive

rate of 4%, the accuracy without attack is more than 99% and the

successful defense rate is nearly 100%. The 4% false positive rate

means that, on average, the human will be asked to classify a road

sign every 25 clean images of road signs that are detected by ADAS.

As adversarial example attacks are rare (but critical) events, how to

further reduce the false positive rate while maintaining accuracy

and successful defense rate is interesting for further research.

6 SERIAL FMTDWITH EARLY STOPPING

In this section, we investigate the run-time overhead of fMTD im-

plementations on two embedded computing boards with hardware

acceleration for deep model training and execution. As many vi-

sual sensing systems need to meet real-time requirements, we also

investigate how to reduce the run-time overhead of fMTDwithout

compromising its accuracy and defense performance.
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Figure 15: Per-sample inference times of parallel and serial

fMTD versus batch size. Error bar represents average, 5th

and 95th percentiles over 100 tests under each setting.

6.1 fMTD Implementation and Profiling

6.1.1 Setup. We use two embedded platforms with different com-

putation capabilities. First, we deploy the fork models for GTSRB

on anNVIDIA Jetson AGX Xavier [52], which is an embedded com-

puting board designed for running deep neural networks in appli-

cations of automative, manufacturing, retail, and etc. The board

sizes 10.5 × 10.5 cm2 and weighs 280 grams including its thermal

transfer plate. It is equipped with an octal-core ARM CPU, a 512-

core Volta GPU with 64 Tensor Cores, and 16GB LPDDR4X mem-

ory. Its power consumption can be configured to be 10W, 15W,

and 30W. In our experiments, we configure it to run at 30W.

Second, we deploy the fork models for vision-based American

Sign Language (ASL) recognition on anNVIDIA Jetson Nano, which

is an embedded computing board designed for edge and end de-

vices. It has a quad-core ARM CPU, a 128-core Maxwell GPU, and

4GB LPDDR4 memory. Its power consumption can be configured

to be 5W or 10W. We set it to run at 10W. Compared with Jet-

son AGX Xavier, Jetson Nano has less computing resources and

suits sensing tasks with lower complexities. We use an ASL dataset

[36], which contains 28 × 28 grayscale images of static hand ges-

tures corresponding to 24 ASL alphabets (excluding J and Z that

require motion). The dataset consists of 27,455 training samples

(5,000 of them are for validation) and 7,172 test samples. Note that

a previous work [24] has developed an embedded ASL recognition

system. The base model for ASL recognition has one convolutional

layer with eight 3 × 3 filters followed by a max pooling layer, one

convolutional layer with sixteen 3×3 filters followed by a dropout

layer and a max pooling layer, one fully connected layer with 128

ReLUs, and a 24-class softmax layer.We generate 24×23 targeted ℓ2
C&W adversarial examples based on the base model. Specifically,

we select a clean test sample in each class as the basis for construct-

ing the adversarial examples whose targeted labels are the remain-

ing classes. All adversarial examples are effective against the base

model. It takes about 51 minutes to generate 20 fork models on Jet-

son Nano. The accuracy (p15) over the entire test dataset is 93.8%.

The successful defense rate (p13) of fMTD is 81.3% and 100% in the

autonomous and human-in-the-loop modes, respectively.

Both Jetson AGX Xavier and Nano run the Linux4Tegra operat-

ing system R32.2 with Tensorflow 1.14 and Keras 2.2.4. Keras is a

neural network library running on top of TensorFlow.

6.1.2 Profiling. We conduct a set of profiling experiments to com-

pare two possible execution modes of fMTD, i.e., parallel and serial.
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Figure 16: Per-sample per-model inference times of parallel

and serial fMTD versus the number of models. Error bar de-

notes average, 5th and 95th percentiles over 100 tests.

In most deep learning frameworks, the training and testing sam-

ples are fed to the deep model in batches. For instance, for ADAS,

the road signs segmented from a sequence of frames captured by

the camera can form a batch to be fed to the deepmodel. Our profil-

ing also follows the same batch manner to feed the input samples

to the fork models. Specifically, in the parallel mode, a batch of in-

put samples are fed to all fork models simultaneously and all fork

models are executed in parallel. This is achieved by the parallel

models feature of Keras. In the serial mode, a batch of input sam-

ples are fed to each of the fork models in serial, i.e., the next model

is not executed until the completion of the previous one.

We compare the inference times of parallel and serial fMTD on

both Jetson AGX Xavier and Jetson Nano. On each platform, we

vary the settings of the batch size and the number of models. Un-

der each setting, we run fMTD in each mode for 100 times. Fig. 15

shows the per-sample inference time of fMTDwith 20 fork models

versus the batch size on the two platforms.We can see that the per-

sample inference time decreases with the batch size but becomes

flat when the batch size is large. This is because that for a larger

batch, TensorFlow can process more samples concurrently. How-

ever, with too large batch size settings, the concurrency becomes

saturated due to the exhaustion of GPU resources. The per-sample

inference time of the serial fMTD is longer than that of the par-

allel fMTD. This is because that Keras will try to use all GPU re-

sources to run as many as possible fork models concurrently. As

the batch size determines the data acquisition time, it should be

chosen tomeet the real-time requirement on the sensing delay that

is the sum of the data acquisition time and inference time. For in-

stance, the time for acquiring a batch of 20 images at a frame rate

of 120 fps is 167ms. From Fig. 15a, the corresponding inference

time of serial fMTD is 4.3 × 20 = 86ms. Thus, the sensing delay is

167 + 86 = 253ms. The sensing delay can be reduced by the early

stopping technique in §6.2.

Fig. 16 shows the per-sample per-model inference time versus

the number of fork modelsN . For serial fMTD, the per-sample per-

model inference time is independent of N . This result is natural.

Differently, for parallel fMTD, it decreases with N .

6.2 Serial fMTD with Early Stopping

6.2.1 Design. From the results in §6.1, due to the hardware re-

sources constraint, the parallel fMTDdoes not bringmuch improve-

ment in terms of inference time. In contrast, the serial fMTD admits

early stopping when there is sufficient confidence about the fused
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result. This is inspired by the serial decision fusion technique [58].

Algorithm1 shows the pseudocodeof the serial fusion processwith

early stopping. Note that, in Line 1, a subset of three models is the

minimum setting enabling the majority-based decision fusion. In

Line 3, the Ts is a configurable attack detection threshold. We will

assess its impact on the serial fMTD’s performance shortly.

Algorithm 1 Serial fusion with early stopping

Given: set of fork models F , input x

1: randomly select 3 models from F and use them to classify x

2: loop

3: if more than Ts × 100% of the existing classification results

are the same then

4: x is detected clean and break the loop

5: else if all models in F have been selected then

6: x is detected adversarial and break the loop

7: end if

8: from F randomly select a model that has not been selected

before and use it to classify x

9: end loop

10: return (1) attack detection result and (2) the majority of the

existing classification results

6.2.2 Evaluation. In our experiments, we set N = 20 and vary the

serial detection threshold Ts from 0.5 to 1. Figs. 17a and 17b show

the number of folk models used in serial fMTD when the input

are 100 clean and 90 adversarial examples, respectively. For clean

examples, when Ts ≤ 60% and Ts = 100%, three models are used

in 99.7% and 93.6% of all the tests, respectively. When Ts = 50%

and Ts = 100%, 3 and 4.1 models are used on average, respectively.

The corresponding average inference times are about 30% and 40%

of that of parallel fMTD executing all 20 models. For adversarial

examples, when Ts ≤ 60%, only three models are used in 88.7% of

all the tests.WhenTs = 50% andTs = 100%, 3.3 and 13.4models are

used on average, respectively. The corresponding inference times

are about 32% and 130% of that of parallel fMTD executing all the 20

models. From the above results, as adversarial example attacks are

rare events, the serial fMTD can reduce inference time effectively

in the absence of attacks.

Then, we evaluate the impact of the early stopping on the sens-

ing and defense performance. Fig. 17c shows the accuracy (p15)

versus the false positive rate (p7). Different points on a curve are

results under different Ts settings from 0.5 to 1. Compared with

executing all fork models, the early stopping results in little ac-

curacy drop (about 0.1%). Fig. 17d shows the successful defense

rate (p13) versus the false positive rate (p7). Different points on a

curve are results under different Ts settings from 0.5 to 1. With

a false positive rate of 4%, the successful defense rate drops 2.2%

only. The above results show that the early stopping can signifi-

cantly reduce the run-time inference time, with little compromise

of accuracy and defense performance. The results for MNIST and

CIFAR-10 are similar; we omit them here due to space constraint.

7 DISCUSSION

The fMTD trains the fork models from perturbed base model. The

results in Fig. 13 show that if the new models are trained from
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Figure 17: Performance of human-in-the-loop serial fMTD

with early stopping. (Dataset: GTSRB; “all” means that early

stopping is not enabled; gray line represents median; red

square dot represents mean; box represents the (20%, 80%)

range; upper/lower bar represents maximum/minimum.)

scratch, near-perfect defense rates can be achieved. In practice, the

factorymodels can bemore sophisticated than the ones used in this

paper. The training from scratchmay require massive training data

and long training time for the embedded system. In addition, the

factory models may contain extensive manual tuning by experts.

The fMTD’s approach of training from perturbed versions of the

factory model is more credible to retain the desirable manual tun-

ing. How to retain specific manually tuned features of the factory

model in the fork models is interesting to future research.

The threat model defined in Section 4.1 is the adversarial exam-

ple attack constructed using the white-box approach based on the

factory model. The adversarial examples that further manage to

attack the proposed MTD are different from the threat model of

this paper. However, it is an interesting future research direction

to develop a systematic approach to design adversarial examples

against the proposed MTD while the attacker acquires neither the

black-box nor the white-box fork models.

8 CONCLUSION

This paper presented a forkmoving target defense (fMTD) approach

for deep learning-based image classification on embedded platforms

against adversarial example attacks. We evaluated its performance

in the absence and presence of attacks. Based on the profiling re-

sults of fMTD on two NVIDIA Jetson platforms, we proposed serial

fMTDwith early stopping to reduce the inference time. Our results

provide useful guidelines for integrating fMTD to the current em-

bedded deep visual sensing systems to improve their security.
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