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Deep learning-based visual sensing has achieved attractive accuracy but is shown vulnerable to adversarial
attacks. Specifically, once the attackers obtain the deep model, they can construct adversarial examples to
mislead the model to yield wrong classification results. Deployable adversarial examples such as small stickers
pasted on the road signs and lanes have been shown effective in misleading advanced driver-assistance systems.
Most existing countermeasures against adversarial examples build their security on the attackers’ ignorance
of the defense mechanisms. Thus, they fall short of following Kerckhoffs’s principle and can be subverted
once the attackers know the details of the defense. This paper applies the strategy of moving target defense
(MTD) to generate multiple new deep models after system deployment, that will collaboratively detect and
thwart adversarial examples. Our MTD design is based on the adversarial examples’ minor transferability
across different models. The post-deployment of dynamically generated models significantly increase the bar
of successful attacks. We also apply serial data fusion with early stopping to reduce the inference time by a
factor of up to 5, as well as exploit hardware inference accelerators’ characteristics to strike better trade-offs
between inference time and power consumption. Evaluation based on three datasets including a road sign
dataset and two GPU-equipped embedded computing boards shows the effectiveness and efficiency of our
approach in counteracting the attack.
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1 INTRODUCTION
The outstanding capability of deep learning in capturing sophisticated patterns have attracted
great interests from the embedded sensing research for various applications such as sign language
translation [10], audio sensing [18], and surgical activities recognition [22]. Deep learning-based
embedded computer vision has also been increasingly adopted on commercial off-the-shelf advanced
driver-assistance systems (ADAS). To implement the long envisaged self-driving cars, the accurate
and resilient perception of the environment is often the most challenging step in the closed loop of
sensing, decision, and actuation. However, recent studies show that deep models (e.g., multilayer
perceptrons and convolutional neural networks), albeit being highly accurate, are vulnerable to
adversarial examples, which are inputs formed by applying small but crafted perturbations to
the clean examples in order to make the victim deep model yield wrong classification results. As
reviewed in [29], systematic approaches have been developed to generate adversarial examples as
long as the attackers acquire the deep model, where the attackers may know the internals of the
model or not. Certain constraints can be considered in the generation process when the attackers
cannot tamper with every pixel of the input. For example, in [9], an algorithm is developed to
determine adversarial stickers that can be implemented by physically pasting small paper stickers on
road signs to mislead vision-based sign classifier. Moreover, as demonstrated in [1], the vision-based
lane detector of Tesla Autopilot, which is an ADAS, can be fooled by small adversarial stickers on
the road and thus direct the car to the opposite lane. Therefore, adversarial examples present an
immediate and real threat to deep visual sensing systems.

Existing countermeasures aim at increasing the deep models’ robustness against the adversarial
examples by adversarial training [13, 24], adding an input transformation layer [7, 14], and gradient
masking [26, 30]. These countermeasures are often designed to address certain adversarial examples.
For example, the adversarial training approaches only enhance the deep model’s robustness against
the adversarial examples considered during the training. Moreover, these static countermeasures
build their security on the attackers’ ignorance of the defense mechanisms. The countermeasures
based on the input transformation and gradient masking can be subverted once the attackers know
the details of the used defense mechanisms [4, 5]. Thus, the existing static countermeasures do not
address adaptive attackers and fall short of following Kerckhoffs’s principle in designing secure
systems (i.e., the enemy knows the system except for the secret key [32]). Once the attackers acquire
the hardened model and the details of the defense, they can craft the next-generation adversarial
examples to render the hardened model vulnerable again.

Beyond the static defense, in this paper, we consider a moving target defense (MTD) strategy [16].
MTD aims to create and deploy mechanisms that are diverse and continually change over time
to increase complexity and cost for attackers [2]. In the MTD of this work, we generate one or
more new deep models after system deployment that the attackers can hardly acquire. Taking the
deep visual sensing of ADAS as an example, under the MTD strategy, new deep models can be
continually trained when the computing unit of a car is idle. Once the training completes with the
validation accuracy meeting specified requirement, the new deep models can be commissioned
to replace the in-service models that were previously generated on the car. By bootstrapping the
in situ training with randomness, it will be practically difficult for the attackers to acquire the
in-service deep models, which thus can be viewed as the secret of the system. With MTD, the
adversarial examples constructed based on the stolen deep models are neither effective across many
systems nor effective against a single victim system over a long period of time.
In this paper, we design an MTD approach for embedded deep visual sensing systems that are

susceptible to adversarial examples. Several challenges need to be addressed. First, adversarial
examples have non-negligible transferability to new deep models [13]. From our evaluation based
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on several datasets, the adversarial examples can mislead the new deep models with a probability
from 7% to 52%. Second, the primitive MTD design of using a single new deep model does not
give awareness of the presence of adversarial examples, thus losing the opportunities of involving
the human to improve the safety of the system. Note that human can be considered immune to
adversarial examples designed based on the perturbation minimization principle. Third, in situ
training of the new deep models without resorting to the cloud is desirable given the concerns of
eavesdropping and tampering during the communications over the Internet. However, the training
may incur significant computational overhead for the embedded systems.
To collectively address the above challenges, we propose a DeepMTD approach based on three

key observations on the responses of new deep models to the adversarial examples. First, the
output of a new deep model that is successfully misled by an adversarial example tends to be
unpredictable. Second, from the unpredictability of the misled new model’s output, if we use
sufficiently many distinct new models to classify an adversarial example, the inconsistency of all
the models’ outputs (due to the unpredictability) signals the presence of attack while the undetected
adversarial examples will be given the correct classification result by a majority of the new models.
Third, compared with training a new deep model from scratch, the training with a perturbed version
of the base model as the starting point can converge up to 4x faster, imposing less computation
burden.
Based on the above observations, we design DeepMTD as follows. When the system has spare

computing resources, it adds independent perturbations to the parameters of the base model to
generate multiple fork models. The base model can be a factory-designed deep model that gives
certified accuracy for clean examples, but may be acquired by the attackers. Each fork model is then
used as the starting point of a retraining process. The retrained fork models are then commissioned
for the visual sensing task. As the fork models are retrained from the base model, intuitively, they
will inherit the classification capability of the base model for clean examples. At run time, an input,
which may be an adversarial example constructed based on the base model, is fed into each fork
model. If the degree of inconsistency among the fork models’ outputs exceeds a predefined level,
the input is detected as an adversarial example. The majority of the fork models’ outputs is yielded
as the final result of the sensing task. If the system operates in the human-in-the-loop mode, the
human will be requested to classify detected adversarial examples.
Our multi-model design echos ensemble machine learning [8]. The existing studies [15, 39]

have considered using an ensemble of deep models to counteract adversarial examples. However,
these existing studies still focus on static ensemble and fall short of addressing adaptive attackers.
Once the adaptive attackers obtain the static ensemble, they can still construct effective adversarial
examples against the ensemble. As shown in this paper, the adaptive attackers can subvert the
static ensemble-based defense with substantial probabilities from 50% to 57%. Different from the
static ensemble, in our approach, the in situ models generated and continuously updated after the
system deployment are distinct both over time and across the systems. This invalidates an essential
basis for the attackers to construct effective adversarial examples, i.e., the acquisition of ensemble.
The run-time inference overhead of DeepMTD is proportional to the number of fork models

used. Based on our performance profiling on two GPU-equipped embedded computing platforms,
instructing TensorFlow to execute the fork models at the same time brings limited benefit in
shortening inference time. In contrast, the serial execution of them admits an early stopping
mechanism inspired by the serial signal detection [27]. Specifically, the system runs the fork models
in serial and terminates the execution once sufficient confidence is accumulated to decide the
cleanness of the input. Evaluation results show that the serial DeepMTD reduces the inference
time by a factor of up to 5. We also optimize the implementation of DeepMTD by exploiting the
characteristics of the hardware inference accelerators.
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The contributions of this paper are summarized as follows.
• Based on the observations on the responses of multiple deep models to adversarial examples,
we design DeepMTD to counteract adversarial example as an ongoing concern. Different
from existing defenses that are static, our dynamic defense approach follows the strategy of
moving target defense and utilizes computing to enhance security.

• We conduct extensive evaluation on DeepMTD’s accuracy in classifying clean examples
as well as its performance in detecting and thwarting adversarial examples under a wide
range of settings. The results provide useful guidelines for adopters of DeepMTD in specific
applications. In particular, we consider two types of advanced adversarial-example attack. The
first mimics the DeepMTD workflow and crafts ensemble adversarial examples; The second
acquires the system’s training dataset and generates the universal adversarial perturbations.

• We show that the serial execution of the fork models with early stopping significantly reduces
the inference time of DeepMTD while maintaining the sensing accuracy in both the absence
and presence of attacks. We also exploit the hardware characteristics of the Jetson devices to
improve the power efficiency of DeepMTD implementation.

The remainder of this paper is organized as follows. Section 2 reviews background. Section 3
presents a measurement study. Section 4 and Section 5 designs and evaluates DeepMTD, respectively.
Section 6 profiles DeepMTD on hardware and evaluates serial DeepMTD. Section 7 studies the
optimization of DeepMTD implementation. Section 8 concludes this paper.

2 BACKGROUND AND RELATEDWORK
In this section, we present the preliminary of adversarial example (Section 2.1), review the existing
studies on developing countermeasures against adversarial examples (Section 2.2) and the broader
studies on machine learning in embedded systems (Section 2.3).

2.1 Adversarial Examples and Construction
Adversarial examples are crafted inputs aiming to mislead deep models to produce incorrect results.
Let 𝑓𝜽 (x) denote a classifier, where 𝜽 is the classifier’s parameter and x ∈ [0, 1]𝑚 is the input (e.g.,
an image). Let 𝑦 denote the ground truth label of x. The x′ = x + 𝜹 ∈ [0, 1]𝑚 is an adversarial
example, if 𝑓𝜽 (x) = 𝑦 and 𝑓𝜽 (x′) ≠ 𝑦. The 𝜹 is the perturbation designed by the attackers. A targeted
adversarial example x′ makes 𝑓𝜽 (x′) = 𝑦𝑡 , where 𝑦𝑡 ≠ 𝑦 is a specified target label. A non-targeted
adversarial example ensures that the classification result 𝑓𝜽 (x′) is an arbitrary label other than
the true label 𝑦. If the attackers need no knowledge of the classifier’s internals, the attack is called
black-box attack. Otherwise, it is called white-box attack. In this work, we consider both targeted
and non-targeted adversarial examples. As we aim to develop defense, it is beneficial to consider
the stronger white-box attack, in which the attackers have the knowledge of the internals of the
base model.
To increase the stealthiness of the attack to human perception, the difference between x and

x′, denoted by 𝐷 (x, x′), is to be minimized. Thus, the construction of the perturbation for a
targeted adversarial example, denoted by 𝜹∗

𝑦𝑡
, can be formulated as [38]: 𝜹∗

𝑦𝑡
= argmin𝜹 𝐷 (x, x′),

subject to 𝑓𝜽 (x′) = 𝑦𝑡 and x′ ∈ [0, 1]𝑚 . The targeted adversarial example that gives the minimum
𝐷 (x, x′) can be yielded as a non-targeted adversarial example. Various gradient-based approaches
have been proposed to construct adversarial examples [6, 13, 38]. Among them, the approach
proposed by Carlini and Wagner (C&W) [6] is often thought highly effective. Thus, we use C&W’s
approach to generate adversarial examples. Specifically, the C&W attack reformulates the problem
of constructing the targeted adversarial perturbation as: 𝜹∗

𝑦𝑡
= argmin𝜹 𝐷 (x, x′) such that a loss

function 𝐿(x′) ≤ 0 and x′ ∈ [0, 1]𝑚 , where 𝑓𝜽 (x′) = 𝑦𝑡 if and only if 𝐿(x′) ≤ 0. Note that the specific
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form of the loss function 𝐿(x′) will be presented shortly. After the reformulation, the Lagrangian
relaxation is applied to simplify the problem as: 𝜹∗

𝑦𝑡
= argmin𝜹 𝐷 (x, x′) + 𝑐 · 𝐿(x′) such that x′ ∈

[0, 1]𝑚 , where 𝑐 is a constant weight for combining the two minimization objectives (i.e., 𝐷 (x, x′)
and𝐿(x′)). The specific form of the function𝐿(x′) is𝐿(x′) = max{max𝑦𝑖≠𝑦𝑡 {𝑍 (x′)𝑦𝑖 }−𝑍 (x′)𝑦𝑡 ,−𝜅},
where 𝑍 (·) represents the logits output of the classifier 𝑓 (·). This form is chosen from various
candidates via extensive empirical evaluation in [6]. The parameter 𝜅 controls the strength of the
constructed adversarial example. With a larger 𝜅, the x′ is more likely classified as 𝑦𝑡 , but the
perturbation 𝜹 will be larger. Details of the attack construction can be found in [6]. Note that the
design of DeepMTD does not rely on any specifics of the C&W’s approach.

2.2 Countermeasures to Adversarial Examples
Overfitted models are often thought highly vulnerable to adversarial example attacks. However,
regularization approaches for preventing overfitting, such as dropout and weight decay, are shown
ineffective in precluding adversarial examples [13, 38]. Brute-force adversarial training [13, 24] can
make a deep model immune to predefined adversarial examples. However, it can be defeated by
the adversarial examples that are not considered during the adversarial training. A range of other
defense approaches [7, 14] apply various transformations to the input during both the training and
inference phases. However, the transformations often result in loss of accuracy on clean samples.
Gradient masking is another category of defense against the adversarial examples constructed
using gradient-based methods [26, 30]. It attempts to deny adversary access to useful gradients
for constructing attack. However, as shown in [4, 5], if the attackers know the details of the
transformation or the gradient masking, they can still construct effective adversarial examples.
Provable defense [28, 40] gives lower bounds of the defense robustness. Its key limitation is that the
lower bound is applicable for a set of specific adversarial examples only. Using a static ensemble
of multiple models has been proposed as a possible defense [15, 39], since it is harder to mislead
all the models of the ensemble than a single model. However, the adaptive attackers who have
exfiltrated the ensemble can subvert the static ensemble-based defense [15]. The key difference
between our approach and the existing approaches is that ours is a dynamic defense while existing
approaches are static. Once the attackers acquire the details of a static defense, the attackers can
design the next-generation adversarial examples and bypass the defense.
In the defense approach described in [31], a deep model is randomly selected from a set of

candidate models each time to classify an input. The approach uses a limited number of candidate
models (e.g., 3 to 6 [31]) and assumes that they are known to the attackers. Its effectiveness of
thwarting the attacks is merely based on the attackers’ ignorance of which model is being used,
thus following a weak form of MTD. Given the limited number of candidate models, it is not
impossible for the attackers to construct an adversarial example that can mislead all candidate
models. Moreover, the approach [31] is short of attack detection capability since a single model is
used each time. In contrast, DeepMTD applies an ensemble of locally generated deep models to
achieve both attack detection and thwarting capabilities. Thus, DeepMTD follows a strong form of
MTD.
Our prior work [34] presented the design of DeepMTD and sensing performance evaluation

results. In this paper, we further consider two types of smart attackers who (1) follow the DeepMTD
workflow to generate fork models from the acquired base model and design the ensemble adversarial
example against the self-generated fork models, and (2) acquire the training dataset of DeepMTD
and craft the universal adversarial perturbation. In Section 5.4, we show DeepMTD’s effectiveness
in counteracting these new attacks. In Section 7, we also make a major extension on the implemen-
tation of DeepMTD on hardware platforms (specifically, NVIDIA’s Jetson embedded GPUs). The
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extension gives a time- and power-efficient system implementation of DeepMTD that integrates
both an algorithmic speed-up technique (i.e., early stopping) and exploitation of hardware inference
accelerator characteristics (i.e., configurable power mode).

2.3 Machine Learning on Embedded Systems
Various recent studies focus on deploying deep models and/or deep learning algorithms on embed-
ded systems. They aim to improve the performance (e.g., throughput, latency, inference accuracy,
etc) of the deep models and deep learning algorithms on the resource-constrained embedded
platforms. For example, to improve the inference performance of deep models, approaches based
on input-adaptive early exit mechanism [11, 20] and system’s runtime dynamics adaptation on
a single device [12] or across the cluster of the end and edge devices [19, 45] have been studied.
The work in [47] aims to enable the resource-demanding model training on embedded devices by
dynamically controlling the structure of DNNs for resource saving. In [46], a ChainSGD-reduce
algorithm and reinforcement learning are applied to address the resource limitation of on-device
federated learning. The work in [43] uses a tree regressor that models the execution time of the
deep model-based application to steer the on-device neural network compression, thus achieving
a better accuracy-efficiency tradeoff. The hardware-aware neural architecture search automates
the design of deep models under hardware constraints to reduce the manual efforts in designing
efficient deep models on embedded and mobile devices [36, 37].
Another category of existing studies applies deep learning to improve the performance of the

embedded applications. For instance, the work in [44] uses the generative adversarial network
(GAN) to reduce the data labeling effort in IoT systems. The work in [41] applies an autoencoder to
compress the data for offloading at local end devices and reconstruct the data on the edge server.
As such, the data transferring latency between the end and edge devices is reduced. The work in
[42] utilizes the deep neural network with self-attention module to estimate the quality of sensing
inputs. It addresses the problem of sensing performance degradation caused by low-quality sensor
inputs in IoT applications such as human activity and gesture recognition.

Different from the above reviewed studies that focusing on engineering and using deep learning
on embedded systems, we follow the MTD strategy to use computing (i.e., constantly retraining
new models during the idle period after the system deployment and joint inference using multiple
generated models) to enhance security against the possible adversarial examples attack.

3 MEASUREMENT STUDY
We conduct measurements to gain insights for MTD design.

3.1 Used Datasets and Deep Models
We use three datasets in our measurement study:

• MNIST [21] consists of 60,000 training samples and 10,000 test samples. Each sample is a
28 × 28 grayscale image showing a handwritten digit from 0 to 9. We select 5,000 training
samples as the validation dataset.

• CIFAR-10 [17] is a 10-class dataset consisting of 50,000 training samples and 10,000 test
samples. Each sample is a 32 × 32 RGB color image. The 10 classes are airplanes, cars, birds,
cats, deers, dogs, frogs, horses, ships, and trucks. We select 5,000 training samples as the
validation dataset.

• GTSRB [35] (German Traffic Sign Recognition Benchmark) is a 43-class dataset with more
than 50,000 images sizing from 15 × 15 to 250 × 250 pixels. For convenience, we resize all the
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Table 1. Targeted adversarial examples constructed using C&W approach [6] with ℓ2-norm and various 𝜅
settings.

Clean Attack’s target label
example 2 3 2 3 2 3

G
ro
un

d
tr
ut
h

0
1

𝜅 = 0 𝜅 = 45 𝜅 = 95

images to 32 × 32 pixels by interpolation or downsampling. We divide them into training,
validation, and test datasets with 34799, 4410, and 12630 samples, respectively.

We adopt two convolutional neural network (CNN) architectures that have been used in [6]
and [26], referred to as CNN-A and CNN-B. Their structures and training hyperparameters can
be found in [33]. We apply CNN-A to MNIST. It is trained on MNIST using the momentum-based
stochastic gradient descent. CNN-A achieves training and validation accuracy of 99.84% and 99.44%,
respectively. We apply CNN-B to CIFAR-10 and GTSRB. CNN-B’s main difference from CNN-A is
that more convolutional filters and more rectified linear units (ReLUs) in the fully connected layers
are used to address the more complex patterns of the CIFAR-10 and GTSRB images. Its softmax
layer has 10 or 43 classes for CIFAR-10 and GTSRB, respectively. For CIFAR-10, CNN-B achieves
a validation accuracy of 79.62%. This result is consistent with those obtained in [6] and [26]. For
GTSRB, CNN-B achieves training and validation accuracy of 99.93% and 96.64%, respectively.

3.2 Measurement Results
In this section, we conduct measurements to investigate the responses of multiple new models to
adversarial examples constructed based on the base model that is different from the new models.

3.2.1 Adversarial examples. We use the deep models described in Section 3.1 as the base models for
the three datasets. Then, we use the C&W approach described in Section 2.1 to generate adversarial
examples based on the base model. Specifically, for each dataset, we select a clean test sample in
each class as the basis for constructing the targeted adversarial examples whose targeted labels
are the remaining classes. To generate non-targeted adversarial examples for each dataset, we
randomly select 100 test samples as the bases for the construction by following the procedure
described in Section 2.1. The C&W’s adversarial examples are highly effective – all adversarial
examples that we generate are effective against the base model.

As described in Section 2.1, the 𝜅 is a parameter of the C&W’s approach that controls the trade-off
between the effectiveness of the attack and the distortion introduced. We vary 𝜅 from 0 to 95. The
first image column of Table 1 shows two clean examples from MNIST. The rest image columns
show a number of targeted adversarial examples constructed with three settings of 𝜅 . For instance,
all images in the second column will be wrongly classified by the base model as ‘2’. We can see
that with 𝜅 = 0, the perturbations introduced by the attack are almost imperceptible to human
eyes without referring to the clean examples. With 𝜅 = 45, there are clear distortions. With 𝜅 = 95,
the perturbations may completely erase the figure shapes or create random shapes. More MNIST
adversarial examples are presented in [33].
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Table 2. Attack success rate (ASR).

MNIST 6.72%
CIFAR-10 17.3%
GTSRB 7.17%
∗ 𝜅 = 0.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

A
SR

Distortion

Fig. 1. ASR vs. distortion.

In the rest of this paper, for the sake of attack stealthiness to human, we adopt 𝜅 = 0 unless
otherwise specified. To confirm the effectiveness of the adversarial examples with 𝜅 = 0, we conduct
an extended experiment with 1,000 targeted adversarial examples of 𝜅 = 0 for MNIST. All these
1,000 adversarial examples are effective against the base model.

3.2.2 Transferability of adversarial examples. In this set of measurements, for each dataset, we train
a new model that has the same architecture as the base model. Then, we measure the attack success
rate (ASR) of the adversarial examples on the new model. An adversarial example is successful if
the deep model yields a wrong label. The ASR characterizes the transferability of the adversarial
examples to a model differing from the one used for their construction. Table 2 shows the ASR for
the three datasets. We can see that the adversarial examples constructed using the base model can
still mislead the new model with probabilities from 7% to 17%. This suggests that the adversarial
examples have some transferability across different deep models with the same architecture.
We also evaluate the transferability of the adversarial examples constructed with different 𝜅

settings. We use the Euclidean distance between the adversarial example x′ and its corresponding
clean example x to characterize the distortion caused by the adversarial perturbation. A larger
𝜅 will result in a larger distortion and thus less stealthiness of the attack to human perception.
Fig. 1 shows the ASR versus distortion for CIFAR-10. We can see that the ASR increases with the
distortion. This shows the trade-off between the attack’s transferability and stealthiness to human.

3.2.3 Outputs of multiple new models. From Section 3.2.2, adversarial examples have non-negligible
transferability to a new model. Thus, using a single new model may not thwart adversarial example
attacks. In this set of measurements, we study the outputs of multiple new models. With the
base model for each of the three datasets, we construct 270 targeted adversarial examples (i.e.,
90 examples based on each of the ℓ0, ℓ2, and ℓ∞ norms as the distance function 𝐷 (x, x′)) and 300
non-targeted adversarial examples (i.e., 100 examples based on each of the three norms). For each of
the three datasets, we independently train 20 new models. We denote by 𝐷 the number of distinct
outputs of the 20 models given an adversarial example. Fig. 2 shows the histogram of 𝐷 . From the
figure, the probability that 𝐷 is greater than one is 51%. This means that, by simply checking the
consistency of the 20 models’ outputs, we can detect half of the adversarial example attacks. The
probability that 𝐷 = 1 is 49%, which is the probability of all the 20 new models giving the same
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Fig. 2. Distribution of the number of distinct outputs of 20 new models given an adversarial example built
using the base model.
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Fig. 3. Distribution of 20 new models’ outputs given an adversarial example with ground truth label of 1 and
attack target label of 0.

output when the input is an adversarial example. It is also the probability that the consistency
check cannot detect whether the input is an adversarial example. Moreover, 99.5% of the adversarial
examples that result in 𝐷 = 1 fail to mislead any new model (i.e., all the 20 new models yield the
correct classification results). This result suggests that, when the input is an adversarial example,
even if the consistency check does not detect whether the input is an adversarial example, a majority
voting by the 20 new models can give correct classification result with a probability of 99.5%.

We now use an example to illustrate whether an adversarial example resulting in 𝐷 > 1 can be
thwarted. Fig. 3 shows the histogram of the 20 new models’ outputs given a targeted CIFAR-10
adversarial example with a ground truth label of 1 and a target label of 0. We can see that most
new models yield the ground truth label and only a few models yield labels rather than the attack’s
target label. This shows that the wrong outputs of the new models tend to be unpredictable, rather
than the attack’s target label. It also suggests that a majority voting from the distinct outputs of the
new models can thwart the attack.

3.2.4 Retraining perturbed base model. The results in Section 3.2.3 suggest that an ensemble of
multiple newmodels is promising for detecting and thwarting adversarial example attacks. However,
the training of the new models may incur significant computation overhead. In this section, we
investigate a retraining approach. Specifically, we add perturbations to the trained base model and
use the result as the starting point of a retraining process to generate a new model. The model
perturbation is as follows. For each parameter matrix M of the base model, we add an independent
perturbation to each element in M. The perturbation is drawn randomly and uniformly from
[𝑤 ·min(M),𝑤 ·max(M)], wheremin(M) andmax(M) represent the smallest and largest elements
ofM, respectively, and𝑤 controls the intensity of the perturbation. The system stops the retraining
process if the validation accuracy stops increasing for five consecutive epochs. Then, the model in
the retraining epoch that gives the highest validation accuracy is yielded as a new model. In this
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Table 3. The number of epochs for new model retraining.

Intensity of Dataset
perturbation (𝑤 ) MNIST CIFAR-10 GTSRB

0.1 11 11 12
0.2 12 13 13
0.3 13 18 13

training from scratch 23 44 22

paper, we retrain the new models with all the training data used for training the base model. Table 3
shows the number of epochs for retraining a new model versus the intensity of the perturbation.
We can see that the number of epochs increases with the perturbation intensity. As a comparison,
when a new model is trained from scratch with the same stopping criterion, the number of epochs
can be up to 4x higher than that with𝑤 = 0.1. We measure the time for retraining 20 new models
from perturbed versions of the base model using the entire GTSRB training dataset consisting of
34,799 images on the AGX Xavier computing board. It takes about 45 minutes.

4 DESIGN OF DEEPMTD
The measurement results in Section 3 suggest an MTD design to counteract adversarial examples.
In brief, multiple fork models can be generated dynamically by retraining independently perturbed
versions of the base model. A consistency check on the fork models’ outputs can detect whether the
input is an adversarial example; the majority of their outputs can be yielded as the final classification
result to thwart the adversarial example attack if present.

4.1 System and Threat Models
Consider an embedded visual sensing system (“the system” for short), which can execute the
inference and training of the used deep model. In this paper, we focus on a single image classification
task. Image classification is a basic building block of many visual sensing systems. The classification
results can be used to direct the system’s actuation. We assume that the system has a factory-
designed model that gives certified accuracy on clean examples and specified adversarial examples.
The system also has a training dataset that can be used to train a new deep model locally that
achieves a satisfactory classification accuracy as that given by the factory model.

We assume that the attackers cannot corrupt the system. Given that the factory model is static,
we assume that the attackers can acquire it via memory extraction, data exfiltration attack, or
insiders (e.g., unsatisfied or socially engineered employees). We also assume that the attackers can
acquire the training dataset on the system, since the dataset is also a static factory setting. We
assume that the attackers can construct stealthy targeted or non-targeted adversarial examples
with a white-box approach (e.g., the C&W approach [6]) based on the factory model or any deep
model trained by the attackers using the dataset. Since the focus of this paper is to develop defense,
it is beneficial to conservatively consider strong attackers who can launch white-box attacks.

4.2 DeepMTDWork Flow
Fig. 4 overviews the work flow of DeepMTD. We consider two operating modes of DeepMTD:
autonomous and human-in-the-loop. Both modes have the following components.

4.2.1 Fork models generation. To “move the target”, the system generates new deep models locally
for image classification. Specifically, we adopt the approach described in Section 3.2.4 to perturb
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Fig. 4. Workflow of DeepMTD. In the autonomous mode, the attack thwarting module is executed regardless
of the attack detection result. In the human-in-the-loop mode, the attack thwarting module is executed only
when the attack detection gives a positive detection result.

the base model with a specified intensity level𝑤 and retrain the perturbed model using the training
data to generate a fork model. The retraining completes when the validation accuracy meets a
certain criterion. Using the above procedure, a total of 𝑁 fork models are generated independently.
We now discuss several issues.

From our evaluation results in Section 5, a larger setting of 𝑁 in general leads to better per-
formance in counteracting the adversarial examples. Thus, the largest setting subject to the com-
putation resource constraints and run-time inference timeliness requirements can be adopted. In
Section 6, we will investigate the run-time overhead of the fork models.
The fork models generation can be performed right after receiving each new release of the

factory-designed model from the system manufacturer. For example, as measured in Section 3.2.4,
generating 20 fork models for road sign recognition requires 45 minutes only. To further improve
the system’s security, the fork models generation can also be performed periodically or continuously
whenever the computing unit of the system is idle. For instance, an electric car can perform the
generation when it is being charged during nights.
Since the fork model is retrained from a perturbed version of the base model, the fork model

may converge to the base model. However, as the stochastic gradient descent used in the training
also incorporates randomness and a deep model often has a large degree of freedom, with a
sufficient perturbation intensity level𝑤 , the fork model is most unlikely identical to the base model.
Nevertheless, MTD is not meant for perfect security, but for significantly increased barriers for the
attackers to launch effective attacks.

4.2.2 Attack detection. An input is sent to all fork models for classification. From the observations
in Section 3.2.3, we can check the consistency of the outputs of all the fork models to detect whether
the input is an adversarial example. If more than 𝑇 × 100% of the outputs are the same, the input is
detected as a clean example; otherwise, it is detected as an adversarial example. 𝑇 is a threshold
that can be configured to achieve various satisfactory trade-offs. We will evaluate its impact on the
performance of the system and discuss its setting in Section 5.

4.2.3 Attack thwarting. Attack thwarting aims to give the genuine label of an adversarial example.
From the observations in Section 3.2.3, we apply the majority rule to thwart the adversarial example
attack. Specifically, the most frequent label among the 𝑁 fork models’ outputs is yielded as the
final result.
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Fig. 5. Categorization of the system’s attack detection and thwarting results and the evaluation metrics. The
shaded blocks of “Failed thwarting” and “Wrong output” are not applicable to human-in-the-loop DeepMTD.

In the autonomous mode, regardless of the attack detection result, the system will execute the
attack thwarting component to generate the final result for the autonomous actuation of the system.
Differently, in the human-in-the-loop mode, upon a detection of adversarial example, the system
will ask the human operator to classify the input and use the result for the system’s subsequent
actuation; if no attack is detected, the system will execute the attack thwarting component to yield
the final classification result for the subsequent actuation. In this paper, we assume that the human
operator will not make any classification error. With this assumption, our performance metrics
analysis (Section 4.3) and evaluation (Section 5) will provide essential understanding on how the
human operator’s involvement enabled by DeepMTD’s attack detection capability improves the
system’s safety in the presence of attacks.
We study both the autonomous and human-in-the-loop modes to understand how human

affects the system’s performance in the absence and presence of adversarial example attacks. Fully
autonomous safety-critical systems in complex environments (e.g., self-driving cars) are still grand
challenges. For example, all existing off-the-shelf ADAS still requires the driver’s supervision
throughput the driving process. In this paper, we use the results of the autonomous mode as a
baseline. For either the autonomous or the human-in-the-loop modes, effective countermeasures
against adversarial examples must be developed and deployed to achieve trustworthy systems with
advancing autonomy.

4.3 Performance Metrics
In this section, we analyze the metrics for characterizing the performance of DeepMTD in the
autonomous and human-in-the-loop modes. Fig. 5 illustrates the categorization of the system’s
detection and thwarting results. In the following, we use 𝑥 to refer to a block numbered by 𝑥

ACM Trans. Sensor Netw., Vol. 1, No. 1, Article 1. Publication date: January 2021.



DeepMTD: Moving Target Defense for Deep Visual Sensing against Adversarial Examples 1:13

in Fig. 5. In Section 5, we use 𝑝𝑥 to denote the probability of the event described by the block
conditioned on the event described by the precedent block. We will illustrate 𝑝𝑥 shortly.
When the ground truth of the input is an adversarial example, it may be detected correctly 1

or missed 2 . Thus, we use 𝑝1 and 𝑝2 to denote the true positive and false negative rates in attack
detection. We now further discuss the two cases of true positive and false negative:

• In case of 1 , the autonomous DeepMTD may succeed 3 or fail 4 in thwarting the attack;
differently, the human-in-the loop DeepMTD can always thwart the attack 3 . When attack
thwarting is successful, the system will yield correct classification result; otherwise, the
system will yield wrong classification.

• In case of 2 , autonomous or human-in-the-loop DeepMTD may succeed 5 or fail 6 in
attack thwarting.

The successful defense rate 13 is the sum of the probabilities for 3 and 5 . The attack success rate
14 is the sum of the probabilities for 4 and 6 . Note that, with the autonomous DeepMTD, the
two rates are independent of DeepMTD’s detection performance, because the attack thwarting
component is always executed regardless of the detection result. In contrast, with the human-in-the-
loop DeepMTD, the two rates depend on DeepMTD’s attack detection performance. In Section 5,
we will evaluate the impact of the attack detection performance on the two rates.

When the input is clean, the detector may generate a false positive 7 or a true negative 8 .
• In case of 7 , the attack thwarting of autonomous DeepMTD may yield a correct 9 or wrong

10 classification result; differently, the human-in-the-loop DeepMTD can always give correct
classification.

• In case of 8 , the attack thwarting of the autonomous or human-in-the-loop DeepMTD may
yield a correct 11 or wrong 12 classification result.

The accuracy of the system in the absence of attack 15 is the sum of the probabilities for 9 and
11 .
For DeepMTD, the successful defense rate 𝑝13 and the accuracy 𝑝15 are the main metrics that

characterize the system’s performance in the presence and absence of attacks. In the autonomous
mode, these two metrics are independent of the attack detection performance. Differently, in the
human-in-the-loop mode, they are affected by the attack detection performance. In an extreme case,
if the detector always gives positive detection results, the human will take over the classification
task every time to give the correct results, causing lots of unnecessary burden to the human in
the absence of attack. This unnecessary burden can be characterized by the false positive rate 𝑝7.
There exists a trade-off between this unnecessary burden to human and the system’s performance.
In summary, the performance of the autonomous DeepMTD and human-in-the-loop DeepMTD
can be mainly characterized by the tuples of (𝑝13, 𝑝15) and (𝑝7, 𝑝13, 𝑝15), respectively.

5 PERFORMANCE EVALUATION
5.1 Evaluation Methodology and Settings
The evaluation is also based on the three datasets and the two CNN infrastructures described in
Section 3.1. We follow the approach described in Section 3.2.1 to generate the adversarial examples.
Fig. 6 shows adversarial examples based on two clean GTSRB examples with labels of “1” and “5”.
The second image in the first row and the sixth image in the second row are clean examples. We
can see that the adversarial perturbations are imperceptible. More GTSRB adversarial examples are
shown in [33]. The DeepMTD has three configurable parameters: the number of fork models 𝑁 ,
the model perturbation intensity𝑤 , and the attack detection threshold𝑇 . Their default settings are:
𝑁 = 20,𝑤 = 0.2, 𝑇 = 1.

ACM Trans. Sensor Netw., Vol. 1, No. 1, Article 1. Publication date: January 2021.



1:14 Q. Song et al.

Attack’s target label
0 1 2 3 4 5 6 7 8 9

1
5

Fig. 6. Targeted adversarial examples constructed using C&W approach [6] with ℓ2-norm. Each row consists
of adversarial examples generated from the same clean example.
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Fig. 7. False positive rate of attack detection (𝑝7).

5.2 Results in the Absence of Attack
The deployment of the defense should not downgrade the system’s sensing accuracy in the absence
of attack. This section evaluates this sensing accuracy.
First, we use all clean test samples to evaluate the false positive rate (i.e., 𝑝7). Fig. 7 shows the

measured 𝑝7 versus 𝑁 under various 𝑤 settings. The 𝑝7 increases with 𝑁 . This is because, with
more fork models, it will be more likely that the fork models give inconsistent results. Moreover,
𝑝7 increases with 𝑤 . This is because, with a higher model perturbation level, the retrained fork
models are likely more different and thus give different results to trigger the attack detection. The
𝑝7 for CIFAR-10 is more than 20%. Such a high 𝑝7 is caused by the high complexity of the CIFAR-10
images. Moreover, the detector with 𝑇 = 1 is very sensitive. With a smaller 𝑇 , the 𝑝7 will reduce.
For instance, with 𝑇 = 0.6, 𝑝7 is around 5%-10%.

Fig. 8 shows the accuracy of the system in the absence of attack (i.e., 𝑝15) versus 𝑁 under various
𝑤 settings. The curves labeled “scratch” represent the results obtained based on new models trained
from scratch, rather than fork models. We can see that training from scratch brings insignificant
(less than 2%) accuracy improvement. The horizontal lines in Fig. 8 represent the validation accuracy
of the respective base models. We can see that due to the adoption of multiple deep models, the
system’s accuracy is improved. The results also show that larger settings for 𝑁 bring insignificant
accuracy improvement. Reasons are as follows. First, for MNIST and GTSRB, as the accuracy of a
single fork model is already high, the decision fusion based on the majority rule cannot improve
the accuracy much. Second, for CIFAR-10, although the accuracy of a single fork model is not
high (about 80%), the high correlations among the fork models’ outputs impede the effectiveness
of decision fusion. The accuracy 𝑝15 depends on the rates that the attack thwarting module gives
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Fig. 8. Accuracy of the system in the absence of attack (𝑝15). The horizontal lines represent the validation
accuracy of the respective base models.

correct output for the false positives and true negatives, i.e., 𝑝9 and 𝑝11. More results on 𝑝9 and 𝑝11
can be found in [33].
From Fig. 8c, the accuracy of the road sign recognition is around 97%. The original images in

GTSRB have varied resolutions. To facilitate our evaluation, we resized all the images to 32 × 32
pixels. This low resolution contributes to the 3% error rate. With higher resolutions, this error rate
can be further reduced. The main purpose of this evaluation is to show that, in the absence of
attacks, DeepMTD can retain or slightly improve the system’s accuracy obtained with the base
model.

Lastly, we consider the human-in-the-loop DeepMTD. Fig. 9 shows the results based on GTSRB.
Specifically, Fig. 9a shows the false positive rate 𝑝7 versus 𝑁 under various settings for the detection
threshold 𝑇 . The 𝑝7 decreases with 𝑇 , since the attack detector becomes less sensitive with smaller
𝑇 settings. The 𝑝7 characterizes the overhead incurred to the human who will make the manual
classification when the attack detector raises an alarm. Fig. 9b shows the accuracy 𝑝15 versus 𝑁
under various 𝑇 settings. The curve labeled “auto” is the result for the autonomous DeepMTD. We
can see that the human-in-the-loop DeepMTD with 𝑇 = 1 outperforms the autonomous DeepMTD
by up to 3% accuracy, bringing the accuracy close to 100%. Fig. 9a and Fig. 9b show a trade-off
between the overhead incurred to and the accuracy improvement brought by the human in the
loop. To better illustrate this trade-off, Fig. 9c shows the accuracy versus the false positive rate
under various model perturbation intensity settings. Different points on a curve are the results
obtained with different settings of the attack detection threshold 𝑇 . We can clearly see that the
accuracy increases with the false positive rate.

5.3 Results in the Presence of Attack
We use the targeted adversarial examples to evaluate the performance of DeepMTD in detecting
and thwarting attacks. Fig. 10 shows the true positive rate (i.e., 𝑝1) versus 𝑁 under various settings
of𝑤 . For the three datasets, the 𝑝1 increases from around 50% to more than 90% when 𝑁 increases
from 3 to 20. This shows that, due to the minor transferability of adversarial examples, increasing
the number of fork models is very effective in improving the attack detection performance. For
GTSRB, when𝑤 = 0.3, all attacks can be detected as long as 𝑁 is greater than 3.
Fig. 11 and Fig. 12 show the rates of successfully thwarting the detected attacks (i.e., 𝑝3) and

the missed attacks (i.e., 𝑝5), respectively. In general, these rates increase with 𝑁 . From the two
figures, DeepMTD is more effective in thwarting the missed attacks than the detected attacks.
This is because, for a missed attack, all fork models give the same and correct classification result.
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Fig. 9. Performance of human-in-the-loop DeepMTD in the absence of attack. (Dataset: GTSRB)
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Fig. 10. True positive rate of attack detection (𝑝1).
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Fig. 11. Rate of thwarting detected attacks (𝑝3).

However, for the detected attacks, all fork models’ results are inconsistent and there is a chance for
the majority among the results is a wrong classification result. From Fig. 11a, MNIST has a relatively
low 𝑝3. This is because under the same setting of 𝜅 = 0, the MNIST adversarial examples have
larger distortions. The average distortions introduced by the malicious perturbations, as defined
in Section 3.2.1, are 1.9 and 0.4 for MNIST and CIFAR-10, respectively. Thus, the strengths of the
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Fig. 12. Rate of successfully thwarting missed attacks (𝑝5).
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Fig. 13. Successful defense rate (𝑝13).

malicious perturbations applied on MNIST are higher, leading to the lower attack thwarting rates
in Fig. 11a.
Fig. 13 shows the successful defense rate (i.e., 𝑝13) versus 𝑁 . The 𝑝13 has an increasing trend

with 𝑁 . The curves labeled “scratch” represent the results obtained with new models trained from
scratch rather than fork models. The DeepMTD achieves successful defense of 98% with𝑤 = 0.3
for CIFAR-10 and𝑤 = 0.5 for GTSRB. MNIST has relatively low success defense rates due to the
relatively low rates of successfully thwarting detected attacks as shown in Fig. 11a. However, with
new models trained from scratch, the successful defense rates for MNIST are nearly 100%. The
higher successful defense rates achieved by the new models trained from scratch are due to the
lower transferability of adversarial examples to such models. However, training from scratch will
incur higher (up to 4x) computation overhead. Thus, there is a trade-off between the attack defense
performance and the training computation overhead.

Lastly, we evaluate how the human improves the attack thwarting performance when DeepMTD
operates in the human-in-the-loop mode. Fig. 14 shows the results based on GTSRB. With a larger
𝑇 setting (i.e., the detector is more sensitive), the true positive rate increases, requesting more
frequent manual classification by the human. As a result, the successful defense rate can increase
to 100%, higher than that of the autonomous DeepMTD. Recalling the results in Fig. 9a, a larger 𝑇
leads to higher false positive rates and thus higher unnecessary overhead incurred to the human.
Thus, there exists a trade-off between the successful defense rate and the unnecessary overhead
incurred to the human. To better illustrate this trade-off, Fig. 14c shows the successful defense rate
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Fig. 14. True positive rate and successful defense rate in the human-in-the-loop mode. (Dataset: GTSRB)

versus the false positive rate. Different points on a curve are the results obtained with different
settings of 𝑇 . We can clearly see that the successful defense rate increases with the false positive
rate.

5.4 Counteracting Smarter Attackers
In this section, we consider the smarter attackers who obtain some critical static information of
the DeepMTD and adaptively construct adversarial examples. We still follow the assumption that
we made for the attacker in Section 4.1, i.e., the attacker cannot break into the system to directly
acquire the dynamically updated in-service fork models, because otherwise the attacker should use
the access to subvert the whole sensing system directly instead of employing adversarial examples.
We consider two kinds of static information: (1) The training dataset and (2) the DeepMTD defense
workflow.

We first consider an attacker who obtains both kinds of static information. The attack strategy
is to follow the DeepMTD’s procedure to generate a set of fork models using the acquired static
factory model and the training dataset, and then craft adversarial examples against the fork models
generated by the attacker. To find the targeted adversarial perturbation, denoted by 𝜹∗

𝑦𝑡
, for an

input x against an ensemble of models such that the majority of these models’ outputs is a specified
targeted label 𝑦𝑡 , the formulation is: 𝜹∗

𝑦𝑡
= argmin𝜹 𝐷 (x, x′) such that the majority of the models’

outputs is 𝑦𝑡 and x′ = x + 𝜹 ∈ [0, 1]𝑚 . However, it is very difficult to solve this problem because the
first constraint (i.e., the majority of the models’ outputs is 𝑦𝑡 ) is non-linear. To make the problem
tractable, we update the formulation in Section 2.1 as: 𝜹∗

𝑦𝑡
= argmin𝜹 𝐷 (x, x′) + 𝑐 · ∑𝑁

𝑘=1 𝐿𝑘 (x′),
where x′ ∈ [0, 1]𝑚 and 𝐿𝑘 (x′) is the value of the loss function 𝐿(·) for the 𝑘th model of the ensemble.
To be more specific, 𝐿𝑘 (x′) = max{max𝑦𝑖≠𝑦𝑡 {𝑍𝑘 (x′)𝑦𝑖 } − 𝑍𝑘 (x′)𝑦𝑡 ,−𝜅}, where 𝑍𝑘 (·) is the logits
output of the 𝑘th model. Under the above updated formulation, the solution tends to induce the
models to output the targeted class label 𝑦𝑡 . This formulation for crafting adversarial examples to
mislead a model ensemble has been also used in [15, 23]. We use the C&W approach to solve the
above optimization problem and generate the ensemble adversarial examples. The non-targeted
ensemble adversarial example can be derived by constructing the targeted ensemble adversarial
examples for all class labels and selecting the one with the smallest 𝐷 (x, x′).

From our experiments, the non-targeted ensemble adversarial examples generated based on a set
of 𝑁 = 20 fork models can mislead the same set of models with probabilities of 50.25%, 57.15%, and
52% for the MNIST, CIFAR-10, and GTSRB datasets, respectively. Table 4 shows several ensemble
adversarial examples constructed in our experiments. We can see that the ensemble adversarial

ACM Trans. Sensor Netw., Vol. 1, No. 1, Article 1. Publication date: January 2021.



DeepMTD: Moving Target Defense for Deep Visual Sensing against Adversarial Examples 1:19

Table 4. Several samples of the ensemble adversarial example constructed against a set of 𝑁 = 20 fork models.
The number below each image on the “Prediction” column is the percentage of the prediction (illustrated by
the image) given by the 20 fork models. (Dataset: GTSRB)

Clean Adversarial Prediction

40% 60%

45% 55%

35% 65%

perturbation is subtle but it can mislead the majority of the models of the ensemble. We also
measure the effectiveness of the ensemble adversarial examples against a new model that is not
used for the attack construction. The ensemble adversarial examples achieve ASRs of 38%, 52%, and
51% for the MNIST, CIFAR-10, and GTSRB datasets on the new model, respectively. We can see
that, the ensemble adversarial examples are less effective in misleading the models used for attack
construction. Moreover, compared with the adversarial examples crafted against a single base model
that are 100% effective against the base model as described in Section 3.2.1, the ensemble adversarial
examples only mislead the set of models used for attack construction with the probabilities of
50-57%. This is because it is more difficult to mislead an ensemble of models than a single model.
However, the ensemble adversarial examples are 38-52% effective on new single models, higher
than the 7-17% effectiveness against the new models of the single-model adversarial examples as
shown in Section 3.2.2. An intuitive explanation on this better transferability is that if an adversarial
example remains adversarial for multiple models, it is more likely effective to other models.

We also conduct a set of experiments to evaluate the performance of DeepMTD in counteracting
this smarter attackers. We randomly select 100 clean examples from each of the three datasets
that are correctly classified by the corresponding base model and construct non-targeted ensemble
adversarial examples using these clean examples.

First, we evaluate the performance of DeepMTD in detecting the ensemble adversarial examples.
Fig. 15 shows the true positive rate (i.e., 𝑝1) versus 𝑁 . We can see that the true positive rates slightly
drop for some of the datasets compared with the results in Fig. 10. Specifically, in Fig. 15, when
𝑤 = 0.3 and 𝑁 = 20, the true positive rates are 87%, 91%, and 94% for the MNIST, CIFAR-10, and
GTSRB datasets, respectively. Under the same settings of𝑤 and 𝑁 in Fig. 10, the true positive rates
are 90%, 84.4%, and 100% for the MNIST, CIFAR-10, and GTSRB datasets, respectively. The true
positive rates can be raised by increasing the model perturbation intensity. For example, when the
new models are trained from scratch, denoted by the curves labeled “scratch”, 100% true positive
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Fig. 15. True positive rate (𝑝1) for ensemble adversarial examples.
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Fig. 16. Rate of successfully thwarting missed attacks (𝑝5) for ensemble adversarial examples.
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Fig. 17. Successful defense rate 𝑝13 vs. false positive rate 𝑝7 (𝑁=20) in the human-in-the-loop mode for
ensemble adversarial examples.

rates can be achieved for all of the three datasets. However, the training computation overhead
also increases.
Second, we evaluate the performance of DeepMTD in thwarting the ensemble adversarial ex-

amples. Fig. 16 shows the rate of successfully thwarting the missed attacks (i.e., 𝑝5) versus 𝑁 . We
can see that the rates of successfully thwarting the missed attacks for all of the three datasets are
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lower than the results in Fig. 12. When 𝑤 = 0.3 and 𝑁 = 20, in Fig. 12, the rates of successfully
thwarting missed attacks are 100% for all of the three datasets. In Fig. 16, under the same settings
of the𝑤 and 𝑁 , the rates of successfully thwarting missed attacks are 84.6%, 66.7%, 16.7% for the
MNIST, CIFAR-10, and GTSRB datasets, respectively. This indicates that more undetected ensemble
adversarial examples tend to mislead the majority of the models of the ensemble. In this case, if
we raise the model perturbation intensity, a higher rate of successfully thwarting missed attacks
can be achieved. Specifically, in Fig. 16, when the new models are trained from scratch, all of the
undetected ensemble adversarial examples are thwarted successfully under the setting of 𝑁 = 20.
Note that in the case when there is no missed attack (i.e., the false negative rate is 0), we let the
rate of successfully thwarting missed attacks to be 100% instead of 0. In Fig. 17, we show the suc-
cessful defense rate (i.e., 𝑝13) versus the false positive rate (i.e., 𝑝7) in the human-in-the-loop mode.
Different points in the figure represent the results obtained with different detection thresholds
𝑇 ranging from 50% to 100%. For the MNIST and GTSRB datasets, we can achieve satisfactory
trade-offs between the defense performance and the overhead of human operation. For the defense
performance of the GTSRB dataset, when the false positive rate is around 2% and 𝑤 = 0.3, the
successful defense rate for ensemble adversarial examples is 72% as shown in Fig. 17c and 98.9% for
single-model adversarial examples as shown in Fig. 14c. If we train the new model from scratch,
when𝑤 = 0.3, the successful defense rate can be increased to 99% with a false positive rate of 4%.
The high false positive rate for the CIFAR dataset is due to the lower accuracy on clean examples
compared with the MNIST and GTSRB datasets, which induces the fork models to yield more
different results for clean examples. This result reminds the DeepMTD adopter that the accuracy
of the base model on clean examples should be high to avoid high false positive rates. From our
experiments, the ensemble adversarial examples have better transferability compared with the
adversarial examples constructed based on a single base model. The results also show that there
exists a trade-off between the attack defense performance and the training computation overhead.

We also consider another smart attacker who only acquires the training dataset. In this case, the
attacker may follow the method in [25] to construct the universal adversarial perturbation (UAP).
Based on a set of training data, the UAP algorithm [25] finds the minimum perturbation needed for
each input data sample to change the target model’s prediction and accumulates the perturbations
over all the training data samples. In our experiment, the target model for the generation of the
UAP attack is a surrogate model trained from the obtained training dataset. The generated UAP is
then effective on many clean input samples. From our experiment, the UAP attack crafted based
on the GTSRB base model can mislead the same model with probability of 38% and transfer to a
new model with probability of 37%. The performance of DeepMTD in thwarting such UAP attack
is shown in Fig. 17c. When the false positive rates are 5% and 11%, the successful defense rates
against the UAP attack are 84% and 95%. The result shows that, compared with no defense, the
DeepMTD can reduce the error rate under the UAP attack from 38% to 5% only.
From the above experiment results, for the attacker to mimic the DeepMTD workflow and

construct the effective ensemble adversarial examples, more computation power and the availability
of the training data are the extra requirements, compared with constructing the single-model
adversarial examples that requires less computation power and a single base model only. On the
defense side, when confronting the smarter adversarial attackers, DeepMTD can still effectively
detect and thwart the attacks by increasing the model perturbation intensity at the cost of higher
model training overhead.

5.5 Summary and Implication of Results
First, from Fig. 8, in the absence of attack, autonomous DeepMTD does not improve the classification
accuracy much when the number of fork models 𝑁 increases. Differently, from Fig. 13, autonomous
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Fig. 18. Per-sample inference times of parallel and serial DeepMTD versus batch size. Error bar represents
average, 5th and 95th percentiles over 100 tests under each setting.

DeepMTD’s successful defense rate can be substantially improved when 𝑁 increases. Note that,
without DeepMTD, the adversarial example attacks against the static base model are always
successful. This suggests the necessity of deploying countermeasures.

Second, there exists a trade-off between the successful defense rate and the computation overhead
in generating the fork models. Specifically, with more fork models retrained from the base model
with larger model perturbation intensity (𝑤 ), higher successful defense rates can be achieved.
However, the retraining will have higher computation overhead as shown in Table 3.
Third, the proposed human-in-the-loop design enables the system to leverage the human’s

immunity to stealthy adversarial examples. The on-demand involvement of human improves the
system’s accuracy in the absence of attack and the successful defense rate in the presence of attack,
with an overhead incurred to the human that is characterized by the false positive rate. From Fig. 9c
and Fig. 14c for the GTSRB road sign dataset, with a false positive rate of 4%, the accuracy without
attack is more than 99% and the successful defense rate is nearly 100%. The 4% false positive rate
means that, on average, the human will be asked to classify a road sign every 25 clean images of
road signs that are detected by ADAS.
Lastly, we show that DeepMTD effectively detects and thwarts the smarter attacks that mimic

the DeepMTD workflow to generate fork models from the acquired base model and then design
the ensemble adversarial examples against the self-generated fork models.

6 SERIAL DEEPMTDWITH EARLY STOPPING
In this section, we investigate the run-time overhead of DeepMTD implementations on two GPU-
equipped embedded computing boards. As many visual sensing systems need to meet real-time
requirements, we also investigate how to reduce the run-time overhead of DeepMTD without
compromising its accuracy and defense performance.

6.1 DeepMTD Implementation and Profiling
We implement DeepMTD on an NVIDIA Jetson AGX Xavier and an NVIDIA Jetson Nano. We
deploy the fork models for GTSRB on both devices. AGX Xavier is equipped with an octal-core
ARM CPU, a 512-core Volta GPU with 64 tensor cores, and 16GB LPDDR4X memory. Nano has a
quad-core ARM CPU, a 128-core Maxwell GPU, and 4GB LPDDR4 memory. Compared with AGX
Xavier, Nano has less computing resources and suits sensing tasks with lower complexities. Both
AGX Xavier and Nano run the Linux4Tegra operating system R32.2 with Tensorflow 1.14 and Keras
2.2.4.
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Fig. 19. Per-sample per-model inference times of parallel and serial DeepMTD versus the number of models.
Error bar denotes average, 5th and 95th percentiles over 100 tests.

We conduct a set of profiling experiments to compare two possible execution modes of DeepMTD,
i.e., parallel and serial. In most deep learning frameworks, the training and testing samples are fed
to the deep model in batches. Our profiling also follows the same batch manner to feed the input
samples to the fork models. Specifically, in the parallel mode, a batch of input samples are fed to
all fork models simultaneously and all fork models are executed in parallel. This is achieved by
the parallel models feature of Keras. In particular, we use the functional API of Keras to create a
new model that contains multiple branches. Each branch contains a fork model. We feed the input
samples to the newmodel so that all branches make inference and output predictions simultaneously.
In the serial mode, a batch of input samples are fed to the fork models in serial, i.e., the next model
is not executed until the completion of the previous one. Currently, we only consider using the
high level APIs provided by the Python deep learning libraries to conduct the parallel and serial
model inference. In the future, it would be interesting to explore other possible execution modes by
investigating the hardware characteristics of GPU including the streaming multiprocessor (SM)
number and shared memory size, and leveraging the low-level parallel computing APIs such as the
CUDA provided by NVIDIA that gives direct access to the GPU’s parallel computing elements.

We compare the inference times of parallel and serial DeepMTD on both AGX Xavier and Nano.
On each platform, we vary the settings of the batch size and the number of models. Under each
setting, we run DeepMTD in each mode for 100 times. Fig. 18 shows the per-sample inference time
of DeepMTD with 20 fork models versus the batch size on the two platforms. We can see that the
per-sample inference time decreases with the batch size but becomes flat when the batch size is large.
This is because that for a larger batch, TensorFlow can process more samples concurrently. However,
with too large batch size settings, the concurrency becomes saturated due to the exhaustion of
GPU resources. The per-sample inference time of the serial DeepMTD is longer than that of the
parallel DeepMTD. This is because that Keras will try to use all GPU resources to run as many
as possible fork models concurrently. As the batch size determines the data acquisition time, it
should be chosen to meet the real-time requirement on the sensing delay that is the sum of the
data acquisition time and inference time. The sensing delay can be reduced by the early stopping
technique in Section 6.2.
Fig. 19 shows the per-sample per-model inference time versus the number of fork models 𝑁 .

For serial DeepMTD, the per-sample per-model inference time is independent of 𝑁 . This result is
natural. Differently, for parallel DeepMTD, it decreases with 𝑁 .
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Algorithm 1 Serial fusion with early stopping
Given: set of fork models F , input x
1: randomly select 3 models from F and use them to classify x
2: loop
3: if more than 𝑇𝑠 × 100% of the existing classification results are the same then
4: x is detected clean and break the loop
5: else if all models in F have been selected then
6: x is detected adversarial and break the loop
7: end if
8: from F randomly select a model that has not been selected before and use it to classify x
9: end loop
10: return (1) attack detection result and (2) the majority of the existing classification results

6.2 Serial DeepMTD with Early Stopping
From the results in Section 6.1, due to the hardware resources constraint, the parallel DeepMTD

does not bring much improvement in terms of inference time. In contrast, the serial DeepMTD
admits early stopping when there is sufficient confidence about the fused result. This is inspired by
the serial decision fusion technique [27]. Algorithm 1 shows the pseudocode of the serial fusion
process with early stopping. Note that, in Line 1, a subset of three models is the minimum setting
enabling the majority-based decision fusion. In Line 3, the 𝑇𝑠 is a configurable attack detection
threshold. We will assess its impact on the serial DeepMTD’s performance shortly.
In our experiments, we set 𝑁 = 20 and vary the serial detection threshold 𝑇𝑠 from 0.5 to 1.

Figs. 20a and 20b show the number of folk models used in serial DeepMTD when the input are 100
clean and 90 adversarial examples, respectively. For clean examples, when 𝑇𝑠 ≤ 60% and 𝑇𝑠 = 100%,
three models are used in 99.7% and 93.6% of all the tests, respectively. When𝑇𝑠 = 50% and𝑇𝑠 = 100%,
3 and 4.1 models are used on average, respectively. The corresponding average inference times are
about 30% and 40% of that of parallel DeepMTD executing all 20 models. For adversarial examples,
when 𝑇𝑠 ≤ 60%, only three models are used in 88.7% of all the tests. When 𝑇𝑠 = 50% and 𝑇𝑠 = 100%,
3.3 and 13.4 models are used on average, respectively. The corresponding inference times are about
32% and 130% of that of parallel DeepMTD executing all the 20 models. From the above results,
as adversarial example attacks are rare events, the serial DeepMTD can reduce inference time
effectively in the absence of attacks.
Then, we evaluate the impact of the early stopping on the sensing and defense performance.

Fig. 20c shows the accuracy (𝑝15) versus the false positive rate (𝑝7). Different points on a curve are
results under different𝑇𝑠 settings from 0.5 to 1. Compared with executing all fork models, the early
stopping results in little accuracy drop (about 0.1%). Fig. 20d shows the successful defense rate
(𝑝13) versus the false positive rate (𝑝7). Different points on a curve are results under different 𝑇𝑠
settings from 0.5 to 1. With a false positive rate of 4%, the successful defense rate drops 2.2% only.
The above results show that the early stopping can significantly reduce the run-time inference
time, with little compromise of accuracy and defense performance.

7 DEEPMTD IMPLEMENTATION OPTIMIZATION
Section 6 aims at reducing the inference time by developing an algorithmic technique, i.e., early
stopping. In this section, we aim at further reducing inference time and power consumption of
DeepMTD by exploiting the characteristics of the hardware inference accelerators. Note that the
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Fig. 20. Performance of human-in-the-loop serial DeepMTD with early stopping. (Dataset: GTSRB; “all”
means that early stopping is not enabled; gray line represents median; red square dot represents mean; box
represents the (20%, 80%) range; upper/lower bar represents maximum/minimum.)

Table 5. Embedded compute boards used in this paper.

NVIDIA Jetson AGX Xavier NVIDIA Jetson Nano

Form 10.5 × 10.5 cm, 280 g 7 × 4.5 cm, 18 g
CPU octa-core ARM 2.26GHz quad-core Cortex-A57
GPU 512-core Volta 128-core Maxwell
RAM 16GB 4 GB
Power 10W / 30W 5W / 10W
OS Linux4Tegra 32.3.1 Linux4Tegra 32.2.0
Software PyTorch 1.4.0 PyTorch 1.3.0

power consumption is a key consideration for battery-based systems. Table 5 summarizes the
specifications of Jetson AGX Xavier and Jetson Nano.

7.1 Power Consumption on Jetson Devices
We first profile the power consumption of DeepMTD on Jetson AGX Xavier and Nano. Both devices
support a low-power mode and a high-power mode. In the low-power mode, the device lowers the
hardware performance (e.g., lower CPU/GPU/memory operating frequencies) to save power; in
the high-power mode, the device fully activates the hardware capabilities. The detailed hardware
capabilities under the two modes can be found in [3]. We conduct a set of profiling experiments
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to compare the power expenditures of serial DeepMTD under the two modes on both Nano and
AGX Xavier. On each platform and power mode, we set 𝑁 = 20 and vary the serial detection
threshold 𝑇𝑠 from 0.7 to 1. The input samples are a mixture of 10,000 clean and adversarial GTSRB
examples. We let 𝑅𝑎 denote the percentage of adversarial examples. The input samples are fed to
the deep models in a batch size of 100. Fig. 21 shows the per-sample inference time of DeepMTD
versus the average power consumption in different modes of Nano, under different settings of 𝑅𝑎 .
During the profiling experiments, we find that the power consumption is mainly affected by 𝑅𝑎
and the power mode. The impact of 𝑇𝑠 setting on the power consumption is little compared with
the aforementioned two factors. This is because 𝑅𝑎 largely affects how many samples will end up
executing more models before early stopping and𝑇𝑠 affects how many models are executed for each
sample. The latter factor has smaller impact on the power consumption. Thus, in each subfigure of
Fig. 21, we group the bars for the same power mode but with different 𝑇𝑠 settings into the same
cluster. In Fig. 21, when 𝑅𝑎 = 0%, 50%, and 100%, the average per-sample inference times on Nano
are 4.1ms, 8.5ms, and 13.2ms in low-power mode and 3.5ms, 7.3ms, and 10.9ms in high-power mode.
Both the per-sample inference time and the average power consumption increase with 𝑅𝑎 because
more models are executed for adversarial examples before the early stopping. When we switch the
Nano from the low-power mode to the high-power mode, the power consumption increases by
around 35% and the per-sample inference time decreases by about 15%. Fig. 22 shows the results
for AGX Xavier. When 𝑅𝑎 = 0%, 50%, and 100%, the average per-sample inference times are 1.6ms,
3.5ms, and 5.4ms in low-power mode and 0.5ms, 1.0ms, and 1.5ms in high-power mode. When
the AGX Xavier switches from the low-power mode to the high-power mode, the average power
consumption increases by 197% and per-sample inference time decreases by 71%. From the above
results, compared with Nano, AGX Xavier has a better performance scaling at the expense of higher
power scaling.

7.2 Improved Implementations of Serial DeepMTD
We investigate two improved implementations of serial DeepMTD that exploit heterogeneous
inference accelerators and the configurable power modes, respectively.

7.2.1 Implementation on hybrid harware. From Fig. 20a, we can see that for most clean examples,
only three models are executed before the early stopping. Thus, the serial DeepMTD with early
stopping can be divided into two stages. The Stage 1 executes three models to classify an input. If the
models’ outputs are consistent, the process yields clean input decision; otherwise, Stage 2 starts and
executes more models sequentially until either the consistency of these models’ outputs is larger
than 𝑇𝑠 (yield clean input decision) or all the models are executed (yield adversarial input decision).
When the input is clean, most likely only Stage 1 is executed. When the input is adversarial, both
stages will likely be executed. We implement the above design on a hybrid hardware architecture
consisting of a Nano and an AGX Xavier to match the characteristics of the two-stage model
execution. Specifically, given an input image, the three models in Stage 1 are executed in parallel
on Nano to classify the input. The models of Stage 2 are executed in serial on AGX Xavier. During
this process, a device switches to the high-power mode when it needs to execute models; otherwise,
it remains in the low-power mode. The above design has the following advantages. First, since
adversarial example attack is rare, in most of the time, the system receives clean inputs and executes
Stage 1 only. Using Nano to execute three models in Stage 1 can meet real-time requirement and
save energy. Second, when the input is adversarial, Stage 2 will be activated. Thus, the AGX Xavier
can speed up the process. Maintaining real-time performance in the presence of adversarial attack
is the first priority, while the increased power consumption is not a concern.
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Fig. 21. Per-sample inference time versus average power consumption of serial DeepMTD on Nano. The first
bar cluster is results in low-power mode and the second cluster is for high-power mode. (Dataset: GTSRB; gray
line represents median; red square dot represents mean; box represents the (20%, 80%) range; upper/lower
whisker represents maximum/minimum.)

The right most cluster of bars in each subfigure of Fig. 23 is the results of DeepMTD implemen-
tation on hybrid hardware. When 𝑅𝑎 = 0%, 50%, and 100%, the average per-sample inference times
are 2.9ms, 3.3ms, and 3.8ms. The average power consumption is calculated as follows. Suppose the
system takes 𝑡1 and 𝑡2 seconds to execute Stage 1 and 2, respectively. The powers consumed in
watts are 𝑃ℎ1 during Stage 1 and 𝑃ℎ2 during Stage 2 for device in high-power mode and 𝑃𝑙1 during
Stage 1 and 𝑃𝑙2 during Stage 2 for device in low-power mode. The average power consumption is
(𝑃ℎ1 +𝑃𝑙1 ) × ( 𝑡1

𝑡1+𝑡2 ) + (𝑃ℎ2 +𝑃𝑙2 ) × ( 𝑡2
𝑡1+𝑡2 ). Compared with the implementation on Nano in high-power

mode (c.f. Section 7.1), the implementation on hybrid hardware improves inference speed by 17%,
55%, and 65% when 𝑅𝑎 = 0%, 50%, and 100%, respectively. Compared with the implementation on
AGX Xavier in high-power mode, implementation on hybrid hardware reduces power consumption
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Fig. 22. Per-sample inference time versus average power consumption of serial DeepMTD on AGX Xavier.
The first bar cluster is results in low-power mode and the second cluster is for high-power mode.

by 53%, 50%, and 42% when 𝑅𝑎 = 0%, 50%, and 100%, respectively. However, the hybrid implementa-
tion also consumes more power than the Nano-only implementation and is slower than the AGX
Xavier-only implementation. Therefore, the hybrid-hardware implementation is a solution that
operates on a new trade-off point of power consumption versus inference speed.

In this hybrid-hardware implementation, the Jetson devices consume considerable energy when
they do not execute models and remain in the low-power mode. Specifically, when 𝑅𝑎 = 0, 50%,
and 100%, such idle energy accounts for 38%, 27%, and 21% of the total energy consumption. This
inefficiency is caused by that the Linux-based Jetson devices cannot switch fast between sleep
mode and work mode, and therefore they have to stand by in the low-power mode.

7.2.2 Implementation with dynamic power mode. We also investigate an alternative implementation
of DeepMTD that exploits the configurable power modes of Jetson devices. This implementation
only uses a single Jetson device, either Nano or AGX Xavier. In this implementation, a device
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Fig. 23. Per-sample inference times versus average power consumption of implementations using configurable
power mode on Nano (the left most cluster) and AGX Xavier (the middle cluster), as well as hybrid-hardware
implementation (the right most cluster).

executes the Stage 1 in low-power mode. Once Stage 2 is activated, the device will switch to
the high-power mode. We evaluate the performance of this implementation on both Nano and
AGX Xavier. Results can be seen in Fig. 23. The left most and the middle clusters of bars are the
results obtained on Nano and AGX Xavier, respectively. When 𝑅𝑎 = 0, 50%, and 100%, the average
per-sample inference times on Nano are 4.1ms, 7.8ms, and 11.5ms. On AGX Xavier, the average
per-sample inference times are 1.4ms, 1.9ms, and 2.4ms. By comparing the results with those of the
hybrid-hardware implementation, when the input is clean (i.e., 𝑅𝑎 = 0), which is the usual case,
the implementation using dynamic power mode on AGX Xavier consumes 49% less power. When
𝑅𝑎 = 50% and 100%, the power savings are 22% and 23%, respectively. Moreover, this implementation
reduces inference latency by 52%, 42%, and 37% when 𝑅𝑎 = 0, 50% and 100%. Thus, the dynamic
power mode implementation on AGX Xavier outperforms the hybrid-hardware implementation in
terms of both inference time and power consumption. We believe that if the hardware inference
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accelerator provides more programmable configurations of power modes, we can better control
the execution of the deep models to strike more desirable trade-off between inference latency and
power consumption. The dynamic power mode implementation on Nano has long inference times
because of Nano’s limited processing power for Stage 2. In summary, the dynamic power mode
implementation on AGX Xavier achieves the most desirable trade-off between inference speed and
power consumption.

8 CONCLUSION
This paper presented DeepMTD for deep learning-based image classification on embedded platforms
against adversarial example attacks. We evaluated its performance in the absence and presence
of attacks. Based on the profiling results of DeepMTD on two NVIDIA Jetson platforms, we
proposed serial DeepMTD with early stopping to reduce the inference time. We also exploited the
characteristics of the Jetson devices to improve the DeepMTD implementation. Our results provide
useful guidelines for integrating DeepMTD to the current embedded deep visual sensing systems
to improve their security.
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