
EdgeFM: Leveraging Foundation Model for Open-set Learning on
the Edge

Bufang Yang
The Chinese University of Hong Kong

Hong Kong SAR, China
bfyang@link.cuhk.edu.hk

Lixing He
The Chinese University of Hong Kong

Hong Kong SAR, China
1155170464@link.cuhk.edu.hk

Neiwen Ling
The Chinese University of Hong Kong

Hong Kong SAR, China
lingnw@link.cuhk.edu.hk

Zhenyu Yan†
The Chinese University of Hong Kong

Hong Kong SAR, China
zyyan@cuhk.edu.hk

Guoliang Xing
The Chinese University of Hong Kong

Hong Kong SAR, China
glxing@cuhk.edu.hk

Xian Shuai
Noah’s Ark Lab, Huawei

Technologies, Hong Kong SAR, China
shuaixian1@huawei.com

Xiaozhe Ren
Noah’s Ark Lab, Huawei

Technologies, Hong Kong SAR, China
renxiaozhe@huawei.com

Xin Jiang
Noah’s Ark Lab, Huawei

Technologies, Hong Kong SAR, China
Jiang.Xin@huawei.com

ABSTRACT
Deep Learning (DL) models have been widely deployed on IoT
devices with the help of advancements in DL algorithms and chips.
However, the limited resources of edge devices make these on-
device DL models hard to be generalizable to diverse environments
and tasks. Although the recently emerged foundation models (FMs)
show impressive generalization power, how to effectively leverage
the rich knowledge of FMs on resource-limited edge devices is still
not explored. In this paper, we propose EdgeFM, a novel edge-cloud
cooperative system with open-set recognition capability. EdgeFM
selectively uploads unlabeled data to query the FM on the cloud
and customizes the specific knowledge and architectures for edge
models. Meanwhile, EdgeFM conducts dynamic model switching
at run-time taking into account both data uncertainty and dynamic
network variations, which ensures the accuracy always close to the
original FM. We implement EdgeFM using two FMs on two edge
platforms. We evaluate EdgeFM on three public datasets and two
self-collected datasets. Results show that EdgeFM can reduce the
end-to-end latency up to 3.2x and achieve 34.3% accuracy increase
compared with the baseline.

CCS CONCEPTS
• Computing methodologies→Machine learning; • Human-
centered computing → Ubiquitous and mobile computing;
• Computer systems organization → Embedded and cyber-
physical systems.
† Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SenSys ’23, November 12–17, 2023, Istanbul, Turkiye
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0414-7/23/11. . . $15.00
https://doi.org/10.1145/3625687.3625793

KEYWORDS
Foundation Models, Edge Computing, Offloading, Edge-cloud Col-
laborative System, Open-set Recognition, Internet of Things

ACM Reference Format:
Bufang Yang, Lixing He, Neiwen Ling, Zhenyu Yan†, Guoliang Xing, Xian
Shuai, Xiaozhe Ren, and Xin Jiang. 2023. EdgeFM: Leveraging Foundation
Model for Open-set Learning on the Edge. In The 21st ACM Conference on
Embedded Networked Sensor Systems (SenSys ’23), November 12–17, 2023,
Istanbul, Turkiye. ACM, New York, NY, USA, 14 pages. https://doi.org/10.
1145/3625687.3625793

1 INTRODUCTION
Deep learning models have been widely deployed on IoT systems
thanks to their excellent performance and the advancement in edge
Artificial intelligence (AI) hardware. There will be more than 1.5
billion edge AI processors shipped in 2024 [13]. Various commercial
and industrial applications are deployed on embedded AI systems,
such as health monitoring systems [49, 70], service and logistics
robots [53], and sound event detection systems [27, 67]. As these
applications must operate in complicated and ever-changing envi-
ronments, scalability and adaptiveness are of great importance.

Most current on-device AI models are task-specific and can
only predict a closed-set of classes pre-defined at the training stage
[49, 68, 71]. Their performance degrades severely when the class of
input is not seen during the training. Although various approaches
such as transfer learning [2, 42] and meta-learning [15, 19] have
been proposed to calibrate models on the edge, they still require
non-trivial efforts for manual data annotation and on-device train-
ing, which are not practical in real-world deployments [33, 44, 49].
The recent emergence of foundation models (FMs) such as GPT
[5] and CLIP [52] have shown impressive general knowledge that
can support diverse downstream tasks like image captioning, ques-
tion answering, and information extraction. Current commercial
proprietary FMs usually contain millions or billions of parameters
and are pre-trained using billions of data samples [4, 37]. Moreover,

https://doi.org/10.1145/3625687.3625793
https://doi.org/10.1145/3625687.3625793
https://doi.org/10.1145/3625687.3625793

SenSys ’23, November 12–17, 2023, Istanbul, Turkiye B. Yang, L. He, N. Ling, Z. Yan, G. Xing, X. Shuai, X. Ren, and X. Jiang

multi-modal FMs such as CLIP and ImageBind can learn embed-
ded matching through massive paired data of different modalities,
such as text, images, audio, and motion data. Their general knowl-
edge can process diverse sensor data with open-set recognition
capability when the interested types of classes change.

Some systems execute FMs on the cloud for tasks like robotic
navigation [1, 38, 53]. However, transmitting all raw data to the
cloud is not feasible in many practical scenarios. Executing bulky
FMs on the edge directly is infeasible due to limited resources. Cur-
rent model compression techniques [58, 65, 75] treat all samples
equally during inference, which leads to significant performance
degradation for difficult/unseen input data. Several studies partition
a large model and deploy them to the edge and cloud for collabo-
rative execution [29, 34, 76]. Most FMs adopt transformers whose
output is even larger than the data input [63], so model partitioning
of FMs is not desirable.

In this paper, we propose EdgeFM, a novel edge-cloud cooper-
ative system that can achieve open-set recognition capability by
leveraging FMs for selective knowledge query and edge model cus-
tomization. As shown in Figure 1, FM is deployed on a cloud server
and acts as a knowledge base containing both general and domain-
specific knowledge. At the inference stage, EdgeFM first determines
whether it should query FMs based on the uncertainty of semantic
features of sensor data and the real-time network variations, which
ensures the accuracy is always close to the original FM. Meanwhile,
EdgeFM selectively uploads unlabeled data to query the FM on the
cloud and periodically customizes the domain-specific knowledge
and architectures for small models in a label-free manner. When the
data distribution or interested class set changes, EdgeFM will query
the knowledge from FMs frequently at the early stage, while it can
primarily execute customized small models on edge devices at the
late stage, thus reducing system overhead subsequently. EdgeFM
supports different tasks and modalities so that different users can
query their domain-specific knowledge from FM while only execut-
ing their customized small models on resource-constrained edge
devices to save system overhead.

We extensively evaluate the performance of EdgeFM on two
FMs (CLIP and ImageBind), and two edge devices (Nvidia Jetson
Xavier and Nano), using three public datasets and two self-collected
datasets. Our results show that EdgeFM reduces end-to-end latency
up to 3.2x compared with existing on-device inference approaches.
EdgeFM can also achieve up to 34.3% accuracy increase compared
with the existing on-device open-set recognition approach.

The contributions of this paper are summarized as follows:

• We propose EdgeFM, the first edge-cloud cooperative sys-
tem with open-set recognition capability leveraging FMs
for selective knowledge query and dynamic edge model
customization. The system can work with sensor data of
different modalities.

• We design a semantic-driven customization approach that
allows EdgeFM to customize the domain-specific knowledge
and the architectures of mobile-friendly models in a label-
free manner.

• We develop a dynamic model switching approach consider-
ing both the uncertainty of semantic features of sensor data
and the real-time network fluctuation.

Cloud

Edge

General
Knowledge

Domain-
Specific 1

Domain-
Specific 3

Domain-
Specific 2

Knowledge Base from FM
Foundation Model

Unseen
classes

 Quantify
Uncertainty

Unlabeled
Sensor Data

FM
Predict.

Customized
Small Model

Final
Predictions

Periodic
Update

Process. Ratio

Edge
Cloud

Query Frequently

Continous
Customization

USER 1

Continuous Customize Edge Model

Process. Ratio

Edge
Cloud

Query Rarely

EdgeFM

USER 2
Audio

Recognition

USER 1
Robotic Semantic

Sensing

USER 3
Human Activity

Recogntion

Customize

Query

Figure 1: An example of EdgeFM, enabling edge devices with
open-set capability using dynamic customization and run-
time model switching.

• We implement EdgeFM on two FMs and deploy it to PC and
two edge platforms. The evaluation includes three public
datasets and two real-world datasets collected by ourselves
about daily activity recognition and robot semantic recogni-
tion. EdgeFM can reduce the end-to-end latency up to 3.2x
and achieve a 34.3% accuracy increase compared with the
baseline.

2 BACKGROUND AND RELATEDWORK
2.1 Multi-Modal Foundation Models
Foundation models (FMs) refer to a new class of large machine learn-
ing models that can extract valuable features to support diverse
downstream tasks such as chatbot (e.g., GPT [5]) and image recog-
nition (e.g., CLIP [52]). Multi-modal FMs represented by CLIP and
ImageBind [18, 52] learn the pairing of data of different modalities
(e.g., RGB image, depth image, and audio) and their correspond-
ing textual description across the internet to achieve the capabil-
ity of open-set recognition. In particular, multi-modal FMs adopt a
transformer-based encoder to extract features from the raw data
and convert them into embedding. FMs also use a text encoder to
extract text embedding from the corresponding textual description
of the raw data (e.g., images). The training of such multi-modal FMs
often adopts contrastive learning to study the pairing between the
data embedding and the corresponding text embedding to construct
a unified embedding space. This is also the reason that multi-modal
FMs like ImageBind can work with one or multi-modal sensor data.
Specifically, for any class described in a natural language man-
ner, FMs such as CLIP first convert the class name 𝐶𝐿𝑆 into a text
description through concatenating𝐶𝐿𝑆 with a pre-defined text tem-
plate called prompt, such as “This is a photo of a {CLS}”. Then, the
text description and the sensor data (such as images) are fed into
the text encoder and image encoder of FMs to obtain respective

EdgeFM: Leveraging Foundation Model for Open-set Learning on the Edge SenSys ’23, November 12–17, 2023, Istanbul, Turkiye

embedding. After computing the similarity score between the text
embedding and other sensor data’s embedding, FMs select the class
with the highest score as the final prediction.

2.2 Related Works
Open-set Recognition. Open-set recognition aims to recognize
any classes described in a natural language manner without fine-
tuning. Existing approaches for open-set recognition can be classi-
fied into two categories: semantic-based and generative adversarial
network (GAN)-based. Semantic-based approaches [8, 27, 57, 61, 67]
build the connection between the embeddings of sensor data and the
semantic embedding of natural language. GAN-based approaches
[46] use a GAN-based semantic decoder to synthesize features for
unseen classes and mix them up with the real features of seen
classes for model training. However, their training data and model
parameters are still limited compared to FMs, showing unsatis-
factory performance of open-set recognition on embedded edge
systems.
Efficient On-device Inference. Many studies are proposed to
accelerate NN inference on edge devices, such as model compres-
sion [48, 66], early-exit [6, 35], input filtering [25, 74] and reusing
[16, 69]. However, model compression, such as quantization [66],
pruning [48], and knowledge distillation (KD) [21], are static ac-
celeration approaches. They will also suffer severe performance
degradation when compressing FMs into the scale of lightweight
CNNs. Early exit [6, 35] can dynamically reduce the redundant
computation of NNs. However, the high-dimensional embeddings
and deep layers of FMs make the early-exit heads very heavyweight.
Moreover, they still require executing the entire FM on the edge
for hard samples, which can exceed the memory bound of edge
devices like Nvidia Jetson Nano. Some work proposes to optimize
computation efficiency by processing input data, including filtering
[25, 74] and reusing [16, 69]. However, they can still not address
the challenge of insufficient memory on edge devices due to the
bulky size of FMs.
FMs on the Edge. Although FMs are more recently emerging,
some approaches have been proposed to optimize the inference of
FMs. MLC-LLM [60] leverages memory planning and quantization
techniques to run LLMs on the phone. Tabi [64] and FrugalGPT [7]
propose to cascade different sizes of models for acceleration. How-
ever, these approaches are tailored for generating text dialogues,
which cannot work with multi-modal sensor data. A line of work
including DIME-FM [58], FD-CLIP [65], VLKD [12], and Mobile-
SAM [75] aims to compress multi-modal FMs by KD. However,
most of the previous works focus on preserving the great open-set
ability of FMs rather than generating task-specific small models,
thus always requiring heavyweight transformer-based architec-
tures [63], which is hard to be implemented on embedded systems.
These approaches also require the dedicated design of small model
architectures, limiting their practicality.
Edge-cloud Collaboration. Several works propose to adopt edge
and cloud collaboration solutions to achieve the trade-off between
accuracy and efficiency, Neurosurgeon [29] splits the NN to deploy
the several layers on the edge while the remaining layers are on the
cloud. SPINN [34] integrates the model splitting and early-exit to
co-optimize multiple objectives, including accuracy and latency, by

adjusting the split point and early exit threshold. AgileNN [26] and
DeepCOD [73] compress the size of transmitted intermediate fea-
tures to improve the edge-cloud inference efficiency. There are also
edge-cloud cooperative systems based on big-little model-switching
[36, 50]. However, most of the previous edge-cloud cooperative
systems focus on task-specific NNs, which work in a closed-set
manner. The development of an open-set supported cooperative
system remains unexplored.

In summary, existing works either focus on optimizing the on-
device efficient inference for closed-set NNs, or compressing FMs
through dedicated designs that are static and not scalable for dy-
namic real-world IoT applications. Leveraging open-set knowledge
of FMs for embedded systems is still an ill-address problem.

3 MOTIVATION: A CASE STUDY
The capability of open-set recognition is highly desirable in both
commercial and industrial embedded systems. Current FM services
predominantly adopt cloud-centric solutions [11, 39]. We first eval-
uate the performance of cloud-centric FM services under real-world
dynamic network conditions. Next, we measure the performance of
FMs and small-size recognition models on objects of unseen classes.
This applies to many embedded systems installing an AI model
that can only recognize a limited set of objects due to constrained
resources. We use a public image dataset FLO102 [47] with 102
types of flowers, and an image dataset collected by us containing
40 classes of common objects in the indoor environments. We use
CLIP [52] and ImageBind [18] as FMs and use lightweight models
for embedded systems like MobileNetV2 [23] and ResNet18 [20]
as small models. In particular, we first study the performance of
FM and small models on unseen classes, the customization of small
models to adapt to the dynamic set of classes, and the execution
efficiency of FMs and small models. Then, we test the feasibility
of customizing embedded models with FM’s knowledge for the
open-set capability.

3.1 Cloud-centric FM services
We first measure how the cloud-centric FM service performs on
an edge system. We set up an edge platform (i.e., NVIDIA Jetson
Nano) to stream RGB images of an office room to the cloud server
for recognizing the objects. The cloud server deploys ImageBind as
the FM. Figure 2 shows the network bandwidth measurements and
corresponding inference latency. The inference latency exhibits con-
siderable fluctuations under dynamic network conditions, ranging
from 200 to 630 ms. However, cloud-centric approaches necessitate
streaming all data to the cloud server, causing non-trivial system
latency (up to 630 ms) due to varying network conditions. The
increased delays can significantly affect user experience, such as
the risk of collisions of home service robots.

3.2 Understanding FMs and SMs
Open-set Capability.We split the dataset into training and test
datasets with no overlapped classes to test the open-set capability
of FMs and small models (SMs). Table 1 shows that FMs can achieve
up to 77% mean accuracy without any fine-tuning or calibration,
while SMs only show 1.5% accuracy on average, which is equivalent
to random guessing. The significant performance gap shows that

SenSys ’23, November 12–17, 2023, Istanbul, Turkiye B. Yang, L. He, N. Ling, Z. Yan, G. Xing, X. Shuai, X. Ren, and X. Jiang

0 100 200 300 400 500
Time stamp (s)

0

10

20

B
an

dw
id

th
(M

bp
s)

200

400

600

La
te

nc
y

(m
s)

Bandwidth Latency

Figure 2: An example showing the inference latency of cloud-
centric FM solutions under dynamic network conditions.

Table 1: The performance of small models (SMs) and founda-
tion model (FMs) with unseen test samples on FLO102 and
SC40 datasets, respectively.

Models FLO102 SC40 Param. FLOPS Nano

SMs MobileNet 1.1% 2.6% 3.5M 0.3B 36.8ms
ResNet18 0.4% 3.4% 11.7M 1.8B 30.5ms

FMs ImageBind 78.4% 71.3% 1172M 167.3B N.A.
CLIP-L/14 79.5% 77.1% 407.8M 61.5B N.A.

0 100 200 400 800 1600
Number of training data

0

25

50

75

A
cc

ur
ac

y
(%

)

ImageBind
CLIP-L/14

MobileNetV2
E�icientNet-B1

Figure 3: The performance of
SMs with different amounts
of fine-tuned data. The param-
eters of FMs are frozen.

Accuracy of CLIP

Figure 4: Feasibility of lever-
aging FMs as a knowledge
base for customizing small
models.

FMs can be used for open-set capability while SMs are hardly usable
when the test data is not seen during the training.
Customization of SmallModels.We further test the performance
of customized small models by calibrating them with data from the
new classes (i.e., the new types of objects added to the environment).
Figure 3 shows the accuracy of the small models customized by
different amounts of labeled data from the new classes. SMs show
unsatisfactory performance that is far below that of FMs when the
amount of labeled data is limited. When more labeled data is used
for calibration, SMs can achieve a good performance that is even
higher than FMs, up to 92%. This shows that the fully customized
small model can achieve similar and even superior recognition
performance than FMs on specific tasks.
Execution Latency of FMs and SMs. Table 1 shows the parameter
size and inference latency of customized SMs and FMs. The param-
eter size and computational overhead in FLOPS of MobileNetV2 are

335x and 558x less than ImageBind, respectively. The inference la-
tency for one single image of MobileNetV2 and ResNet18 are 36.8ms
and 30.5ms on Jetson Nano, respectively. However, both ImageBind
and CLIP-L/14 require more than 6GB memory, which exceeds the
memory limit of Jetson Nano, and thus can not directly execute
(marked as N.A. in Table 1). The huge computation requirement of
FMs urges it mostly deployed on the cloud.

The above preliminary results motivate us to adopt a model-
switching solution between FMs on the cloud and customized small
models on the edge, which can leverage the respective advantages of
FMs and customized small models. In summary, FMs like CLIP and
ImageBind have good open-set capabilities, but they are too large to
fit in embedded systems. On the other side, SMs can achieve a better
performance than FMs after customizing models with labeled data
from the new classes. However, the labeled data for customization
is usually not available in practical applications.

3.3 Customization with FMs
We further explore the feasibility of leveraging FMs to customize
SMs by using the prediction results of FMs as pseudo labels to
supervise the customization of SMs. Specifically, we train SMs under
different percentages of correct labels and validate whether training
with noisy labels is possible. Figure 4 shows the performance of SMs
when we set different accuracy of the pseudo labels. We control
the correct percentage of the pseudo labels among 400 unseen test
samples, which is the values on the x-axis. The vertical line shows
the accuracy of CLIP-L/14. The result shows that the accuracy of
the SM is 90% when all the pseudo labels are correct, while the
accuracy of the SM drops to 80% when the pseudo labels have
80% accuracy. Meanwhile, CLIP can provide accuracy with 79.5%
without any fine-tuning. This motivates us to use FMs as a rich and
general knowledge base to provide high-quality supervision for the
customization of SMs.

4 APPLICATION AND SYSTEM OVERVIEW
EdgeFM is a novel edge-cloud cooperative system with open-set
recognition ability by using FMs for selective knowledge query and
edge model customization. Next, we will introduce the application
scenario and overview of the system.

4.1 Application Scenarios
Weuse two examples to discuss the potential applications of EdgeFM.
The first application is robot semantic sensing [44] which is widely
used for home services [33] and industrial applications [62]. The
main challenge for the current home-service robot system is the
high diversity in personal items and dynamic environmental factors
across households. In addition, the types of objects in the environ-
ment will change over time. For example, users sometimes buy or
throw items. Current recognition models on home-service robots
[33, 44] require labeled data for model retraining to adapt to the new
classes of objects, which is not realistic and user-unfriendly. The
second application is human activity recognition (HAR), which is
an essential algorithm for many smart embedded systems for health,
such as disease monitoring and fitness tracking. The main challenge
for current HAR systems [49] is that there is a need for model cali-
bration. During the first-time installation, the HAR system requires

EdgeFM: Leveraging Foundation Model for Open-set Learning on the Edge SenSys ’23, November 12–17, 2023, Istanbul, Turkiye

the user to manually collect and label data to calibrate the model to
the environment and the target activities of users. Moreover, it may
require periodic calibration when the monitored activities change
due to the changing health condition or the doctor’s advice.

4.2 System Architecture
EdgeFM is a novel edge-cloud cooperative system that enables
edge devices with open-set recognition. Figure 5 shows the system
overview of EdgeFM. In the customization stage, EdgeFM conducts
knowledge query and customization (§ 5.1) and dynamic edge up-
date (§ 5.2) to selectively upload unlabeled data to the cloud and
customize the domain-specific knowledge and architectures for
small models. Specifically, EdgeFM first conducts user device profil-
ing on the edge to obtain information about the applications (e.g.,
tasks and modalities) and computation resources (e.g., memory
constraints) of edge devices (§ 5.2.2). The profiling results are then
employed by the model selection module to determine the appropri-
ate architecture for small models on the edge (§ 5.1.2). Meanwhile,
EdgeFM selectively uploads the unlabeled sensor data to the cloud
(§ 5.2.1) for customization. EdgeFM will conduct semantic-driven
customization on the cloud (§ 5.1.1) and periodically update the
customized small model and text embedding pool to the edge. Dur-
ing the inference, EdgeFM inference engine employs the dynamic
network adaptation module (§ 5.3.2) to continuously monitor the
network condition and update the threshold searching table. Then,
EdgeFM conducts dynamic model switching (§ 5.3.1) to determine
whether query FM on the cloud or use customized small models
for inference. The dynamic model switching policy of EdgeFM sup-
ports open-set models and also considers both the uncertainty of
the sensor data and the dynamic network variation.

5 DESIGN OF EDGEFM
5.1 Knowledge Query and Customization
In this section, we will introduce how EdgeFM customizes the
domain-specific knowledge and architectures for the small models
in a label-free manner.

5.1.1 Semantic-driven Customization. The limited computation
resources of edge platforms and real-time requirements of tasks
usually require adopting mobile-friendly CNNs architectures rather
than the heavyweight transformer [63]. The main challenge here is
how to effectively customize the heterogeneous lightweight CNNs
by the knowledge from FMs in a label-free manner while preserv-
ing open-set recognition capability. To address this challenge, we
propose a semantic-driven customization approach. Next, we will
introduce the components of our semantic-driven customization
approach respectively.
Heterogeneous Feature Mapping. Unlike existing work distill-
ing knowledge between similar architectures, EdgeFM conducts
customization between heterogeneous models, i.e. FMs to mobile-
friendly CNNs. Existing lightweight CNNs [23, 59] can be regarded
as consisting of a convolution-based feature extractor and a task-
specific classifier. However, FMs usually adopt transformer-based
architectures [63], which encode the input images or spectrograms

into a sequence of tokens and extract context information. Multi-
modal FMs further align the embeddings of vision or audio modal-
ity with the text embedding in a unified embedding space. The
difference in embedding space and heterogeneous model archi-
tectures between FMs and small models makes the customization
challenging. Therefore, we discard the task-specific classifier of the
original small models and add a feature projection network on top
of the original feature extractor of small models, which is defined
as v𝑖 = 𝜓 (S(x𝑖)), where S(·) denotes the feature extractor of the
customized small model,𝜓 (·) is the feature projection network. The
architecture of the feature projection network𝜓 (.) is a lightweight
single-layer feed-forward network. It can ensure the features of the
customized small model have the same dimension as FM’s unified
embedding space, facilitating matching with text embeddings of
FMs to enable open-set recognition. For example, the output fea-
tures of MobileNetV2 have a dimension of 1280, while the unified
embedding space for ImageBind is 1024. Consequently, the input
and output dimensions of the feature projection network are 1280
and 1024, respectively.
Knowledge Query from the FoundationModel. It is impractical
to obtain high-quality labeled data in embedded systems. Under this
scenario, the direct way to customize domain-specific knowledge
from FMs is to use Mean-Squared-Error (MSE) loss to pull closer
the embedding of sensor modality (e.g., image) between FMs and
small models. Figure 6 shows the recognition accuracy of the cus-
tomized small model when fine-tuned with labeled data and when
employing unlabeled data with MSE loss for knowledge distillation
from FM. We can see that employing unlabeled data with MSE loss
will lead to significant accuracy degradation compared with using
labeled data for fine-tuning.

To address this challenge, we propose to leverage FMs to further
customize the user-specific knowledge to the small models. Here
we define the user-specific knowledge as the interested class set
specified by users. Specifically, EdgeFM initially pre-stores a text
embedding pool that contains text embeddings from a wide range
of frequently-used classes. The text embeddings in the pool are
computed by the text encoder of FMs on the cloud. In practical
use, EdgeFM allows users to freely add their interested classes for
respective applications. The text embeddings of these newly added
classes are computed by FMs on the cloud and are added to the
pool, which is then updated to the user device periodically (§ 5.2.2).
Note that it does not mean requiring users to annotate each data,
but only providing interested classes set.

Take vision tasks as an example, suppose the text embedding
pool is T and the visual encoder of FM is T𝑣 (·), FMs on the cloud
first extract the visual embedding of the unlabeled data x𝑖 as T𝑣 (x𝑖).
Then, EdgeFM will select a text embedding t′

𝑖
from the text embed-

ding pool with the highest similarity with T𝑣 (x𝑖) as:

t′𝑖 = 𝑎𝑟𝑔𝑚𝑎𝑥 (⟨T𝑣 (x𝑖), t𝑘 ⟩), t𝑘 ∈ T, (1)

where t′
𝑖
is defined as the pseudo text embedding. We also assign

t′
𝑖
a confidence score as𝑤𝑖 =

〈
T𝑣 (x𝑖), t′𝑖

〉
, i.e. the cosine similarity

between T𝑣 (x𝑖) and t′
𝑖
. The obtained pseudo text embedding and

its confidence score will be used for semantic-driven distillation.
Semantic-drivenDistillation Loss. To further customize the user-
specific knowledge, we propose semantic distillation loss. Here we
take vision recognition as an example. Firstly, we adopt MSE loss

SenSys ’23, November 12–17, 2023, Istanbul, Turkiye B. Yang, L. He, N. Ling, Z. Yan, G. Xing, X. Shuai, X. Ren, and X. Jiang

Dynamic Edge Update

Cloud
Server

Unlabeled
Sensor Data

Applications
Resources

Knowledge Query and Customization

Semantic-driven
CustomizationTask-specific

Model Pool

User Device
Profiling

Model Selection

Content-aware
Data Uploading

 Periodic Update

Edge
Devices

EdgeFM
Inference Engine

Customized
Small Model

Text Embedding
Pool

Text
Embedding

Pool

 Periodic
Update

Monitor & Update

Customized
Small Models

Foundation
Model

Threshold-
searching Table

Network
Profiling

Uncertainty
Quantification

Dynamic Network
Adaptation

Dynamic Model
Switching

Query FM ?

EdgeFM Inference
Engine (§5.3)

Run on Edge ?
Uncertainty

Quantification

(§5.2)

(§5.1)

Figure 5: Overall system architecture of EdgeFM.

100 200 400 800
Number of training data

0

20

40

60

80

A
cc

ur
ac

y
(%

) Unlabeled data KD
Labled data FT

(a) Flower recognition.

100 200 400 800
Number of training data

0

20

40

A
cc

ur
ac

y
(%

) Unlabeled data KD
Labled data FT

(b) Activity recognition.

Figure 6: Customization accuracy with labeled data and un-
labeled data. FT denotes fine-tuing.

to pull the features extracted by customized small models closer to
the visual embedding of FMs, i.e. L𝑣𝑖𝑠 = H𝑀𝑆𝐸 (T𝑣 (x𝑖), v𝑖), where
T𝑣 (x𝑖) and v𝑖 are the visual embedding of FMs and customized
small model, respectively;H𝑀𝑆𝐸 is MSE function. Next, we adopt
a bidirectional contrastive learning loss [52] to further pull the
features extracted by customized small models closer to the pseudo
text embedding of FMs. Given a mini-batch of 𝑏𝑠 paired data (v𝑖 , t̂𝑖),
where v𝑖 is the embedding of the sensor data (e.g., image) extracted
by the customized small model, and t̂𝑖 is the most similar text
embedding in the text embedding pool of FMs, as in Equation 1. We
adopt the bidirectional contrastive learning loss which is defined
as:

L𝑣→𝑡 ′
𝑖 = −𝑙𝑜𝑔

𝑒𝑥𝑝
{〈
v𝑖 , t̂𝑘

〉
/𝜏
}∑𝑏𝑠

𝑘=1 𝑒𝑥𝑝
{〈
v𝑖 , t̂𝑘

〉
/𝜏
} (2)

L𝑡 ′→𝑣
𝑖 = −𝑙𝑜𝑔

𝑒𝑥𝑝
{〈
t̂𝑖 , v𝑘

〉
/𝜏
}∑𝑏𝑠

𝑘=1 𝑒𝑥𝑝
{〈
t̂𝑖 , v𝑘

〉
/𝜏
} (3)

L𝑡𝑒𝑥𝑡 =
1
𝑏𝑠

𝑏𝑠∑︁
𝑖=1

𝑤𝑖

{
𝜆L𝑣→𝑡 ′

𝑖 + (1 − 𝜆)L𝑡 ′→𝑣
𝑖

}
(4)

where𝑤𝑖 is the confidence score of the sample x𝑖 , which is obtained
as mentioned before. 𝜆 and 𝜏 are the weight and temperature param-
eters, respectively. We test the two parameters with FLO102 dataset
and choose 𝜆 = 0.5 and 𝜏 = 1 that achieve the best recognition
performance for the customized small model.

5.1.2 Model Selection of Small Models. We develop a model selec-
tion module that can customize the architecture of small models
on the edge based on the tasks, modalities, and computation re-
sources of edge devices. Figure 7 shows varied performance of four
small models with different architectures on different tasks and
data modalities. In particular, MobileNetV2 [22] performs better
on vision-based recognition tasks like HAR, but has worse perfor-
mance on the audio recognition task. This is because the depth-wise
separable convolution is unsuitable for extracting the features from
spectrogram-based data [23]. Moreover, the computation resources
such as memory footprint and FLOPS vary for different edge devices
and tasks. To this end, EdgeFM will determine the architecture of
small models based on the tasks, data modalities, and computation
resources of edge devices. Specifically, EdgeFM pre-stores many
classical small model architectures with different accuracy and com-
putation overhead such as MobileNet [23], and also those optimal
architectures searched by Neural Architecture Search (NAS) tech-
nique such as EfficientNet series [59], on the cloud server. These
small model architectures are grouped and stored in a task-specific
model pool according to the modalities and tasks. At the offline
stage, we test the recognition accuracy of each small model on pub-
lic datasets and measure the resource usage, including the memory
footprint and FLOPS. Note that we only use the model’s accuracy on
public datasets to assess its representation capability, without neces-
sitating the use of labeled data from users. The accuracy, memory
footprint, and FLOPS are recorded in a table, i.e., the accuracy-
resource lookup table. At the online stage, EdgeFM will first select
the corresponding model pool 𝑃𝑂𝑂𝐿𝑎𝑝𝑝 based on the application
specified by users. Next, EdgeFM determines the architecture of
the small model by searching the accuracy-resource lookup table to
maximize the recognition accuracy under the resource constraints
of FLOPS and memory.

5.2 Dynamic Edge Update
5.2.1 Content-aware Data Uploading. Streaming all data to the
cloud can cause non-trivial transmission overhead and unreliability.
However, existing approaches [36, 50] utilize the softmax score by
the conventional closed-set model to determine the data uploading,
which is not suitable for open-set models. Therefore, we design
a content-aware data-uploading approach tailored for open-set

EdgeFM: Leveraging Foundation Model for Open-set Learning on the Edge SenSys ’23, November 12–17, 2023, Istanbul, Turkiye

100 200 400 800 1600
Number of unlabeled data

0

20

40

60

A
cc

ur
ac

y
(%

)

ResNet18
MobileNetV2

E�icientNet-B1
E�icientNet-B3

(a) Activity recognition.

100 200 400 800 1600
Number of unlabeled data

0

20

40

60

A
cc

ur
ac

y
(%

)

ResNet18
MobileNetV2

E�icientNet-B1
E�icientNet-B3

(b) Audio recognition.

Figure 7: Performance of small models with different archi-
tectures on different modalities.

100 200 400 800 1600
Number of unlabeled data

20

40

60

80

A
cc

ur
ac

y
(%

)

w.o.filtering Acc
w.filtering Acc

0.0

0.2

0.4

0.6

0.8

1.0

U
pl

oa
di

ng
ra

ti
o

Reduced upload data

(a) Flower recognition.

100 200 400 800 1600
Number of unlabeled data

0

20

40

60

A
cc

ur
ac

y
(%

)

w.o.filtering Acc
w.filtering Acc

0.6

0.8

1.0

U
pl

oa
di

ng
ra

ti
o

Reduced upload data

(b) Activity recognition.

Figure 8: Customization accuracy and uploading data ratio
with or without content-aware data-uploading.

models, which utilizes the semantic similarity between sensor data
embeddings and text embeddings as uploading criterion.

Since our semantic-driven customization enables the open-set
recognition capability of the customized small models, we use
semantic similarity as uncertainty quantification of the samples.
This distinguishes EdgeFM from previous studies in terms of the
uncertainty metrics. Specifically, for each collected data samples
x𝑖 , we first compute the cosine similarity between sensor data
embedding v𝑖 (computed by the customized small models) and
each text embedding t𝑘 in the text embedding pool T, which is
defined as 𝑠𝑖𝑚(x𝑖) = ⟨v𝑖 , t𝑘 ⟩. We use the margin score [50] as
uncertainty quantification for the samples, which is defined as
𝑈𝑛𝑐 (x𝑖) = 𝑠𝑖𝑚1 (x𝑖) − 𝑠𝑖𝑚2 (x𝑖), where 𝑠𝑖𝑚1 (x𝑖) and 𝑠𝑖𝑚2 (x𝑖) are
the highest similarity and the second highest similarity calculated
between x𝑖 and all t𝑘 in the text embedding pool. Only samples with
𝑈𝑛𝑐 (x𝑖) < 𝑉𝑡ℎ𝑟𝑒 will be uploaded to the cloud for customization.
We set 𝑉𝑡ℎ𝑟𝑒 = 0.99 based on the observation that this configura-
tion results in a substantial reduction in data transmission with
negligible accuracy deterioration.

Figure 8 shows the customization accuracy and uploading data
ratio with or without content-aware data uploading. We can see
that with the collected unlabeled sensor data increasing from 100
to 1600, the ratio of uploading data decreases from 100% to about
40% on two applications (as the blue line shows) with a negligible
accuracy drop. Therefore, content-aware data uploading can help
EdgeFM reduce the network transmission overhead in real-world
implementations.

5.2.2 User Device Profiling and Periodic Update. To reduce the
transmission overhead, EdgeFMperiodically updates the customized

small model and text embedding pool and delivers them to the edge
device. Compared to prior studies [3, 30], a unique characteristic of
our approach is the dynamic updating of the text embedding pool
on the edge side, which enables the support of open-set recognition
on edge devices. Specifically, EdgeFM utilizes a user device profiler
to record the information of edge devices, such as applications (e.g.,
tasks and modalities), and computation resources of edge devices
(e.g., memory usage and latency requirements). This information
is then employed by the model selection module (§ 5.1.2) to select
the appropriate architecture for the customized small model. On
the other hand, EdgeFM continuously collects sensor data from the
environment and selectively uploads them to the cloud server. Upon
the uploaded data reaching the specified amount, EdgeFM will con-
duct semantic-driven customization and subsequently download
the updated customized small model to the edge device. Moreover,
the text embedding pool on the cloud is also updated if users add
their interested class set. The text embedding pool and customized
small model will be updated synchronously to the user device. The
frequency of periodically updating the edge side in EdgeFM offers
a trade-off between accuracy and transmission overhead. Since the
experimental results in [3] have shown that setting the updating
interval to 200 sec yields the best trade-off between accuracy and
transmission overhead, EdgeFM adopts the same updating interval
of 200 sec for both customized small models and the text embedding
pool.

5.3 EdgeFM Inference Engine
This section introduces the EdgeFM inference engine, which per-
forms dynamic model switching at runtime, considering both the
uncertainty of sensor data and network variation.

5.3.1 Dynamic Model Switching. EdgeFM adopts an edge-cloud
hybrid prediction mechanism based on the collaboration between
customized small models, router model, and FM, where the first
two models run on edge devices while FM runs on the cloud. The
overall prediction of EdgeFM for input sample x𝑖 is defined as:

𝑃 (𝑦 | x𝑖) = 𝑟 (x𝑖)𝑃𝑆𝑀 (𝑦 | x𝑖) + (1 − 𝑟 (x𝑖))𝑃𝐹𝑀 (𝑦 | x𝑖) (5)

where 𝑃𝑆𝑀 (𝑦 | x𝑖) and 𝑃𝐹𝑀 (𝑦 | x𝑖) are the predictions of the
customized small model and FM, respectively. Note that the pre-
dictions of the open-set model in EdgeFM are computed by the
cosine similarity score between sensor data embeddings and text
embeddings, i.e. 𝑃𝑆𝑀 (𝑦 | x𝑖) = ⟨v𝑖 , t𝑘 ⟩, 𝑃𝐹𝑀 (𝑦 | x𝑖) = ⟨T𝑣 (x𝑖), t𝑘 ⟩.
v𝑖 and T𝑣 (x𝑖) are the sensor data embeddings that are computed by
the customized small model and FM, respectively. A router model
𝑟 (x𝑖) controls the models switching according to the prediction
of the customized small model and a threshold 𝑡ℎ𝑟𝑒 (𝑡), which is
defined as:

𝑟 (x𝑖) = 1 {𝑈𝑛𝑐 (x𝑖) ≥ 𝑡ℎ𝑟𝑒 (𝑡)} (6)
where 𝑈𝑛𝑐 (x𝑖) is the uncertainty of the sensor data, which is de-
fined in Section 5.2.1. Note that the threshold 𝑡ℎ𝑟𝑒 (𝑡) in the infer-
ence engine is different from the threshold in the dynamic edge
update. EdgeFM tunes the threshold 𝑡ℎ𝑟𝑒 (𝑡) at runtime to adapt to
the dynamic network condition (see Section 5.3.2). Based on the
uncertainty of the input sample and threshold, the router model
determines whether to query FMs on the cloud for inference or use
the prediction of the customized small model.

SenSys ’23, November 12–17, 2023, Istanbul, Turkiye B. Yang, L. He, N. Ling, Z. Yan, G. Xing, X. Shuai, X. Ren, and X. Jiang

5.3.2 Dynamic Network Adaptation. Model switching threshold
determines the trade-off between accuracy and inference latency.
EdgeFM adopts the dynamic network adaptation module to find
the optimal model switching threshold under the dynamic network
fluctuation.

Specifically, EdgeFM will periodically collect a specific num-
ber of sensor data from the environment to build a calibration
set. We sample the threshold equally in the range of (0, 1). For
each 𝑡ℎ𝑟𝑒 ∈ (0, 1), EdgeFM computes the edge-side processing pro-
portion 𝑟 (𝑡ℎ𝑟𝑒), overall accuracy 𝑎𝑐𝑐 (𝑡ℎ𝑟𝑒), edge-side processing
latency 𝑡𝑒𝑑𝑔𝑒 , transmission latency 𝑡𝑡𝑟𝑎𝑛𝑠 , and cloud-side processing
latency 𝑡𝑐𝑙𝑜𝑢𝑑 for the calibration set, and saves them in a threshold-
searching table. The estimated end-to-end inference latency can be
expressed as:

𝑡𝑒2𝑒 (𝑡ℎ𝑟𝑒) = 𝑟 (𝑡ℎ𝑟𝑒) · 𝑡𝑒𝑑𝑔𝑒 + (1 − 𝑟 (𝑡ℎ𝑟𝑒)) · (𝑡𝑡𝑟𝑎𝑛𝑠 + 𝑡𝑐𝑙𝑜𝑢𝑑) (7)

As EdgeFM does not need users to provide data annotations, we
adopt the predictions of FM as ground truth to compute the accuracy
as the estimated accuracy 𝑎𝑐𝑐 (𝑡ℎ𝑟𝑒).

At runtime, EdgeFMperforms analysis on the estimated accuracy-
latency space based on the threshold-searching table and the pri-
ority of user demands. For example, if the priority of accuracy is
higher than the inference latency, EdgeFM will select the smallest
𝑡ℎ𝑟𝑒 to satisfy not exceeding the constraint of accuracy degradation.
If the inference latency has a higher priority, EdgeFM will select
the largest 𝑡ℎ𝑟𝑒 to ensure the estimated end-to-end latency is lower
than the latency constraint as follows:

max
𝑡ℎ𝑟𝑒∈ (0,1)

𝑡ℎ𝑟𝑒 s.t. 𝑡𝑒2𝑒 (𝑡ℎ𝑟𝑒) ≤ 𝐿𝑎𝑝𝑝 (8)

where 𝐿𝑎𝑝𝑝 is the end-to-end latency constraint, which is specified
by the applications. At runtime, network transmission time 𝑡𝑡𝑟𝑎𝑛𝑠
can be efficiently updated by estimating the real-time network
bandwidth: 𝑡𝑡𝑟𝑎𝑛𝑠 = 𝐷𝑖𝑚

𝐵 (𝑡) , where 𝐷𝑖𝑚 is the dimension of samples,
𝐵(𝑡) is the real-time estimated network bandwidth. The estimation
of the network has been extensively studied in prior research [31].
Our approach is compatible with the most widely used techniques
in this field. Based on Equation 7 and Equation 8, we can obtain
the optimal edge-side processing proportion 𝑟 (𝑡ℎ𝑟𝑒) at the current
network bandwidth. The relationship between 𝑟 (𝑡ℎ𝑟𝑒) and 𝑡ℎ𝑟𝑒

can be queried from the threshold-searching table with negligible
latency. Therefore, EdgeFM can adapt to the network variation
through dynamic adjusting its threshold at runtime.

5.4 System Implementation
5.4.1 Edge-cloud Implementation. We implement EdgeFM on a
desktop server (Intel i9-12900K CPU with two NVIDIA RTX 3090
GPU) and two NVIDIA edge platforms, Jetson Nano and Jetson
AGX Xavier. The network connection and data transmission parts
in EdgeFM are developed via TCP socket API.We use TrafficControl
in Linux to simulate different network conditions and iPerf tool [28]
to measure the network bandwidth at regular one-second intervals.

5.4.2 Foundation Models. We implement EdgeFM on two FMs, Im-
ageBind [18] and CLIP [52]. We adopt the image and audio modali-
ties of ImageBind for evaluation in this work. For CLIP, we use the
CLIP-L/14 version, which reports the highest performance among
CLIP series. For vision-based tasks, we use CLIP and the vision

branch of ImageBind as FMs for evaluation. As CLIP only supports
vision modality, we only use ImageBind for the audio recognition
task.

5.4.3 Prompt Setting. Both ImageBind and CLIP require a prompt
to convert the single class name in a natural language manner into
a textual description. The prompt for HAR task is set to “a photo
of a person doing 𝐶𝐿𝑆 .”, which are the same as CLIP’s setting [52].
For indoor scene recognition and flower recognition, the prompt
is “a photo of a 𝐶𝐿𝑆 .”. For audio recognition, we extract the text
embeddings from the class name, which is the same as ImageBind’s
setting [18].

5.4.4 Baseline Approaches. We compare EdgeFM with two types
of baselines, including the efficient on-device inference baselines
and open-set recognition baselines.
Efficient On-device Inference Baselines. We implement sev-
eral representative on-device NN efficient inference approaches on
ImageBind and CLIP for a fair evaluation.

PersEPhonEE [35], which is an edge-only NN acceleration ap-
proach based on early exit. we implement PersEPhonEE on the
two FMs. There are two ways to implement the early-exit classifier
for ImageBind and CLIP, including a fully-connected classifier and
cosine distance classifier [10], where the latter one is adopted as it
performs better in experiments.

SPINN [34], which is an edge-cloud collaboration approach in-
tegrating model splitting and early-exit techniques. Similarly, we
re-implement SPINN on ImageBind and CLIP. We also adopt cosine
distance classifier as the early-exit head.

Cloud-centric, which is the most widely adopted solution for FM
inference [1, 38, 53]. For the cloud-centric approach, we deploy
ImageBind and CLIP on the server and offload all the samples to
the server for inference.
Open-set Recognition Baselines. We also compare the open-set
recognition accuracy of EdgeFM with other open-set recognition
baselines.

Semantic-based Approaches. DUS-VAE [57], ER-ZSAR [8] and
VGGishZSL [67] are three typical semantic-based baselines, which
are specifically designed for HAR, audio recognition, and image
recognition. They all connect the sensor data’s embedding with the
semantic embeddings of classes or sentence descriptions generated
from language models such as Word2Vec [45] and BERT [14].

GAN-based approaches. TF-VAEGAN [46] is a GAN-based open-
set recognition approach, which uses a semantic decoder to synthe-
size features for unseen classes. As current GAN-based approaches
mainly focus on vision tasks, they are not used for the comparison
on audio-related tasks.

6 EVALUATION
6.1 Applications and Datasets
We evaluate EdgeFM on three application scenarios, i.e., HAR,
robotic semantic sensing, and audio recognition. Table 2 shows
the details of the five datasets and their corresponding FM.

6.1.1 Human Activity Recognition.
Self-collected HAR dataset (SC15).We collect a real-world HAR
dataset in an indoor home setting as shown in Figure 9a. The dataset

EdgeFM: Leveraging Foundation Model for Open-set Learning on the Edge SenSys ’23, November 12–17, 2023, Istanbul, Turkiye

Table 2: Details of datasets, and FMs used in evaluation. CLS
is the number of classes.

Dataset Tasks CLS FMs

SC15 Activity recognition 15 ImageBind/CLIP
UCF101 Activity recognition 101 ImageBind/CLIP
SC40 Indoor scene recognition 40 ImageBind/CLIP

FLO102 Flower recognition 102 ImageBind/CLIP
ESC50 Audio recognition 50 ImageBind

contains 30 subjects and each subject performs 15 activities, includ-
ing sleeping, sitting on a chair, standing, squatting, playing mobile
phone, rummaging cabinet, eating, playing chess, drinking, playing
computer, reading books, watering flowers, handwashing, sweep-
ing the floor, and brushing teeth. The total duration of the dataset
is about 20 hours, where the sampling rate is 20Hz. The collected
video data is split into 2-second recordings, and the middle frame
is selected as input samples of EdgeFM, which is the same setting
in [18, 52].
UCF101[56]. This is a public video-based human activity recog-
nition dataset. We extract the middle frame of each activity video
as input samples, which is the same processing way as in [18, 52].
It contains 11,331 images from 101 different categories of human
activities. We use the same train-test split as in [52] for a fair evalu-
ation.

6.1.2 Robotic Semantic Sensing.
Self-collected indoor scene dataset (SC40). We collect a real-
world indoor scene dataset, where objects in the environment are
allowed to be added dynamically. As shown in Figure 9b, a robot
equipped with a camera and edge platform moves randomly in
the environment and takes RGB images continuously. We collect
18,295 RGB images in 40 classes in total. During the data collection,
we place half of the classes first and place the other later. Current
indoor scene datasets like SUN RGB-D [55] do not consider the
scenario where users dynamically add objects into the environment,
which is the main purpose of our self-collected dataset.
FLO102 [47]. This is a public dataset that contains 8,189 images
from 102 different categories of flowers. We use the same train-test
split as in [52] for a fair evaluation.

6.1.3 Audio Recognition.
ESC50 [51]. This is a public audio dataset that contains 2,000 audio
clips from 50 different classes of environmental sound. Each audio
clip is a 5-sec recording sampled at 44.1 kHz. We use the same
train-test split as in [67] for a fair evaluation.

6.2 An End-to-End Application
We conduct an end-to-end test by deploying EdgeFM with CLIP as
the FM on a mobility robot for semantic sensing. Figure 10a shows
the moving trajectory of the robot in a room.

6.2.1 Adaptability to Network Variation. We evaluate the adapt-
ability of EdgeFM to network variation. When the robot moves,
the network bandwidth fluctuates with time and location, where
the lowest and the highest bandwidth are 2 Mbps and 123 Mbps,
respectively. We prioritize the execution performance by setting

(a) HAR testbed setup.

RGB Camera

Edge Platform

First stage:
water cup, towel, smartphone, scotch tape,
umbrella, scissors, potted plant,...

Second stage:
trash cans, clothes, laptops, chair,
earphones, books, lamps, laptops...

(b) Robot semantic sensing testbed setup.

Figure 9: Two real-world testbed setups.

the latency bound to 30ms, which can meet real-time requirements
for most of the applications [26]. EdgeFM tunes the threshold of
model switching according to the bandwidth in real-time, ranging
from 0 to 1 with an interval of 0.05.

Figure 10b shows that EdgeFM sets the threshold to a relatively
high value (∼0.99) to ensure that most of the samples are offloaded
to the cloud for inference, at high bandwidth conditions (e.g., 𝑡 ∈
[50, 200]). When the bandwith is low (e.g., 𝑡 ∈ [20, 50]), EdgeFM
sets the threshold to a relatively low value (∼0.15) to make most
data processed on the edge while only few samples are offloaded
to the cloud. Overall, results show that EdgeFM can successfully
adapt to the dynamic network variation by tuning the threshold of
model switching at runtime.

6.2.2 Adaptability to Environment Change. We further evaluate the
adaptability of EdgeFM to the environment change, i.e. both data
distribution and interested classes change. To simulate the scenario
where items in users’ homes change over time, we first add half of
the classes into the environment and then add the remaining classes
later. We run EdgeFM continuously in an unsupervised manner to
evaluate the adaptability to the environment change.

Figure 11 shows the proportion of edge-cloud processed data, the
overall accuracy of EdgeFM and the original FM, and the moment
when environment change occurs. The grey dashed line increases
after the environment change as the original FM has higher accu-
racy for the second half of classes. The result shows that EdgeFM
can adjust the proportion of edge-cloud processed data at runtime
to adapt to the environment change. To maintain the overall ac-
curacy close to the original FM’s accuracy, the edge processing
proportion of EdgeFM decreases from 84.4% to 40.2% after envi-
ronment change (i.e., the green bar in Figure 11). Compared with
traditional close-set approaches, EdgeFM can reduce the efforts of
manual labeling significantly.

6.3 Overall Performance of EdgeFM
6.3.1 Comparison with Baselines of Efficient On-device Inference.
We evaluate both the inference latency and accuracy of EdgeFM and

SenSys ’23, November 12–17, 2023, Istanbul, Turkiye B. Yang, L. He, N. Ling, Z. Yan, G. Xing, X. Shuai, X. Ren, and X. Jiang

Start

(a) Moving trajectories of the robot in the room.

0 100 200 300 400 500
0

40

80

120

B
an

dw
id

th
(M

bp
s) Bandwidth Logs

Bandwidth

0 100 200 300 400
Time stamp (s)

28

32

36

La
te

nc
y

(m
s)

Latency Threshold

0.0

0.4

0.8

Th
re

sh
ol

d

Latency & Threshold of EdgeFM

Latency Threshold

(b) Variation of network bandwidth and the threshold and inference
latency of EdgeFM.

Figure 10: EdgeFM’s setup and system indicators of the end-
to-end evaluation.

 Environment Change

Figure 11: EdgeFM’s performance when the environment
changes in the end-to-end evaluation. X-axis shows the
amount of collected data. D1 and D2 denote the two envi-
ronments.

on-device NN efficient inference baselines. We implement PersE-
PhonEE [35] and SPINN [34] on two FMs, i.e., ImageBind and CLIP.
We set the bandwidth to 55 Mbps for all tests in this evaluation.

The results in Figure 12 and Table 3 show that EdgeFM can
achieve up to 1.52x∼2.63x end-to-end latency reduction com-
pared with the best baseline approaches for ImagBind, and can also
achieve up to 1.27x∼3.22x end-to-end latency reduction compared
with the best baseline approaches for CLIP. As shown in Figure 12,
among these approaches, only the latency of EdgeFM is lower than
60ms under the 55 Mbps bandwidth, which can meet the real-time
requirements for most applications [43]. Meanwhile, EdgeFM can

EdgeFM

PersE
PhonEE

Cloud-ce
ntric

SPINN
0

50

100

150

200

250

300

350

La
te

nc
y

(m
s)

Cloud Latency
Network Latency

Edge Latency
Accuracy

40

50

60

70

80

90

A
cc

ur
ac

y
(%

)

Cloud Latency
Network Latency

Edge Latency
Accuracy

(a) ImageBind, FLO102.

EdgeFM

PersE
PhonEE

Cloud-ce
ntric

SPINN
0

50

100

150

200

250

La
te

nc
y

(m
s)

Cloud Latency
Network Latency

Edge Latency
Accuracy

30

40

50

60

70

80

90

A
cc

ur
ac

y
(%

)

Cloud Latency
Network Latency

Edge Latency
Accuracy

(b) ImageBind, SC40.

EdgeFM

PersE
PhonEE

Cloud-ce
ntric

SPINN
0

50

100

150

La
te

nc
y

(m
s)

Cloud Latency
Network Latency

Edge Latency
Accuracy

20

40

60

80

A
cc

ur
ac

y
(%

)

Cloud Latency
Network Latency

Edge Latency
Accuracy

(c) CLIP, FLO102.

EdgeFM

PersE
PhonEE

Cloud-ce
ntric

SPINN
0

50

100

150

200

250

La
te

nc
y

(m
s)

Cloud Latency
Network Latency

Edge Latency
Accuracy

30

40

50

60

70

80

90

A
cc

ur
ac

y
(%

)

Cloud Latency
Network Latency

Edge Latency
Accuracy

(d) CLIP, SC40.

Figure 12: Accuracy and inference latency of EdgeFM and
other on-device NN efficient inference systems.

Table 3: The reduced end-to-end latency compared with the
best baselines on two edge platforms. N.A. means not appli-
cable since CLIP supports vision data only.

FM Device FLO102 UCF101 SC40 SC15 ESC50

ImageBind Xavier 1.67x 2.63x 1.65x 1.52x 1.70x
Nano 1.80x 2.36x 1.84x 1.73x 1.32x

CLIP Xavier 2.10x 2.20x 2.36x 2.01x N.A.
Nano 2.52x 1.27x 3.22x 2.37x N.A.

achieve higher accuracy than both SPINN and PersEPhonEE on the
two FMs. This is because PersEPhonEE adopts an early-exit mecha-
nism to reduce redundant computation. However, early-exit heads
on FMs are heavyweight due to the high-dimensional embedding
of FMs and deep layers. Although SPINN can offload computation
to the cloud, it needs to transmit a large size intermediate em-
beddings. The size of intermediate embeddings of ImageBind is
257×1×1280, which is much larger than the size of the raw image
(i.e., 3×224×224).

Another observation is that EdgeFM’s recognition accuracy
can even outperform the cloud-centric approach on some certain
datasets (see Figure 12b). This is because a dedicated SM trained
with abundant data (e.g., more than 800) can outperform FMs, which
aligns with the findings shown in Figure 3. However, for more chal-
lenging datasets with more diverse data, such as UCF101, the per-
formance of customized small models remains inferior to that of the
FMs. This discrepancy also proves the remarkable generalization
ability of FMs.

6.3.2 Impact of Network Bandwidth. We evaluate the impact of
network bandwidth on EdgeFM. We conduct evaluations under low

EdgeFM: Leveraging Foundation Model for Open-set Learning on the Edge SenSys ’23, November 12–17, 2023, Istanbul, Turkiye

6 29 55
Network Bandwidth (Mbps)

0

100

200

300

400

500

600

La
te

nc
y

(m
s)

EdgeFM
PersEPhonEE
Cloud-centric
SPINN

(a) ImageBind, FLO102.

6 29 55
Network Bandwidth (Mbps)

0

100

200

300

400

500

La
te

nc
y

(m
s)

EdgeFM
PersEPhonEE
Cloud-centric
SPINN

(b) ImageBind, SC40.

6 29 55
Network Bandwidth (Mbps)

0

100

200

300

400

500

La
te

nc
y

(m
s)

EdgeFM
PersEPhonEE
Cloud-centric
SPINN

(c) CLIP, FLO102.

6 29 55
Network Bandwidth (Mbps)

0

100

200

300

400

500

La
te

nc
y

(m
s)

EdgeFM
PersEPhonEE
Cloud-centric
SPINN

(d) CLIP, SC40.

Figure 13: Impact of network bandwidth on EdgeFM.

(6 Mbps), middle (29 Mbps), and high (55 Mbps) network bandwidth,
respectively. Figure 13 shows that EdgeFM can achieve up to 3.5x
and 3.7x end-to-end inference speedup on ImageBind compared
with cloud-centric and SPINN under low network conditions (6
Mbps). Under high network bandwidth conditions, this gap narrows,
where EdgeFM is still able to achieve up to 1.7x and 2.4x end-to-
end inference speedup compared with cloud-centric and SPINN
under 55 Mbps bandwidth. Results in Figure 13 show that EdgeFM
performs better than the existing solutions, especially under low
bandwidth conditions.

6.3.3 Comparison with Open-set Recognition Approaches. We then
evaluate the open-set recognition accuracy and inference latency
of EdgeFM and open-set recognition approaches on two edge plat-
forms. The network bandwidth is also set to 55 Mbps for EdgeFM.

As shown in Table 4, EdgeFM achieves 26.7% higher accuracy
on average than GAN-based approaches. Compared with semantic-
based approaches, EdgeFM achieves 21.2% and 21.7% higher ac-
curacy than DUS-VAE and ES-ZSAR, respectively. Since EdgeFM
adopts lightweight small models on the edge, the end-to-end in-
ference latency of EdgeFM is lower than the baselines. For Jetson
Nano, EdgeFM reduces the latency by 1.73x and 1.98x compared
with the best baseline on FLO102 and UCF101 datasets respectively.

We also implement EdgeFM on the audio branch of ImageBind
and compare it with baselines on the audio recognition task. EdgeFM
achieves 34.3% accuracy gain and 3.22x inference latency reduction
on Jetson Nano compared with VGGishZSL on ESC dataset. VG-
GishZSL adopts VGG19 [54] as the audio feature extractor, where
its FLOPS and parameters are 10x larger than the lightweight, small
model used in EdgeFM. However, the inference latency of EdgeFM
is slower than VGGishZSL 12.9ms on Xavier. This is because the
strong computing power of Jetson AGX Xavier’s GPU makes the
parallel computation highly efficient, which causes the latency to
be not equivalent to the FLOPS and parameters.

Table 4: Overall accuracy(%) and latency of EdgeFM compared
with other open-set recognition approaches.

Dataset Approach Acc Xavier Nano

FLO102
TF-VAEGAN [46] 62.5% 54.2 ms 108.1 ms
DUS-VAE [57] 62.1% 57.7 ms 110.1 ms

EdgeFM 83.3% 44.6 ms 62.2 ms

UCF101
TF-VAEGAN [46] 41.0% 53.9 ms 107.1 ms
ER-ZSAR [8] 51.8% 87.9 ms 424.8 ms
EdgeFM 73.5% 42.7 ms 54.0 ms

ESC50 VGGishZSL [67] 33.0% 42.2 ms 217.2 ms
EdgeFM 67.3% 55.1 ms 67.5ms

100 200 400 800 1600
Number of unlabled data

0

50

100

Pr
op

or
ti

on
(%

)

Cloud
Edge

FM Accuracy
EdgeFM Acc

40

60

80

A
cc

ur
ac

y
(%

)

Cloud
Edge

FM Accuracy
EdgeFM Acc

(a) FLO102.

100 200 400 800 1600
Number of unlabled data

0

50

100

Pr
op

or
ti

on
(%

)

Cloud
Edge

FM Accuracy
EdgeFM Acc

0

25

50

75

A
cc

ur
ac

y
(%

)

Cloud
Edge

FM Accuracy
EdgeFM Acc

(b) ESC50.

Figure 14: Proportion of the data processed by the customized
small model on edge and FM on the cloud.

6.4 Understanding EdgeFM’s Performance
6.4.1 Proportion of the Data Processed on Edge. We assess the
proportion of the data processed by the customized small model
on edge and the FM on cloud in EdgeFM, where we use CLIP as
the FM in the experiments. Figure 14 shows that the proportion
of the edge processed data increases when more data is collected.
The proportion of data processed on edge increases from 31.1%
to 63.5% when the collected data increases from 100 to 400. The
proportion can increase up to 97.3% when collecting 1600 samples
in the environment, which means only 2.7% data are required to
be uploaded to the cloud for inference, thus can reduce end-to-
end latency compared with cloud-centric solutions. Moreover, our
dynamic model switching strategy can keep the overall accuracy
always close to the original FM.

6.4.2 Effectiveness of Semantic-driven Customization. We compare
our semantic-driven customization with the vanilla KD and fine-
tuning with the hard pseudo label (FT). The vanilla KD [21] adopts
the standard KL divergence to minimize the embedding gap be-
tween FMs and small models without using the pseudo text em-
beddings from FMs. FT refers to adopting the hard pseudo label
predicted by FMs as ground truth and cross-entropy for distilla-
tion. Figure 15a shows that our semantic-driven customization
(marked as SDC in the figure) is able to achieve up to 9.2%, 6.1%,
4.7%, and 6.7% accuracy gain for small model performance under
the different number of training data. Since hard pseudo labels
fail to preserve semantic relationships between categories [27, 61],
FT performs inferior to our approach. Vanilla KD fails to leverage

SenSys ’23, November 12–17, 2023, Istanbul, Turkiye B. Yang, L. He, N. Ling, Z. Yan, G. Xing, X. Shuai, X. Ren, and X. Jiang

100 200 400 800
Number of unlabeled data

10

20

30

40

50

A
cc

ur
ac

y
(%

)

FT
Vanilla KD
SDC

(a) Edge-only performance.

100 200 400 800
Number of unlabeled data

45

50

55

60

65

A
cc

ur
ac

y
(%

)

FT
Vanilla KD
SDC

(b) Edge-cloud performance.

Figure 15: The performance of EdgeFM’s semantic-driven
customization.

0.80.850.90.950.99
Threshold

20

30

40

50

60

La
te

nc
y

(m
s)

Latency Accuracy

82

83

84

A
cc

ur
ac

y
(%

)

Latency Accuracy

(a) FLO102.

0.50.70.80.90.99
Threshold

30

40

50

60

La
te

nc
y

(m
s)

Latency Accuracy

50

55

60

65

70

A
cc

ur
ac

y
(%

)

Latency Accuracy

(b) UCF101.

Figure 16: Accuracy-latency trade-off caused by the confi-
dence threshold in EdgeFM.

the knowledge within text embeddings, thus resulting in inferior
performance compared to our approach. Figure 15b shows the edge-
cloud performance between the three approaches, where we keep
the data uploading proportion the same (50% in our setting) for a
fair comparison. The result show that EdgeFM’s semantic-driven
customization can achieve up to 4.6%, 3.0%, 3.0%, 2.4%, and 3.4%
accuracy gain under the different number of training data.

6.4.3 Trade-off between Accuracy and Latency. Figure 16 shows
the accuracy-latency trade-off caused by the threshold of model
switching in EdgeFM. Setting a higher threshold leads to more
sensor data offloaded to the cloud, and higher overall accuracy but
longer end-to-end inference latency. On the other hand, a lower
threshold makes more sensor data processed by the customized
small models on the edge and save the network transmission la-
tency, achieving faster end-to-end inference but lower accuracy.
Therefore, there is a trade-off between accuracy and latency caused
by the model switching thresholds. EdgeFM adjusts the threshold
at runtime considering the variation of network bandwidth. The
evaluation results can be found in Section 6.2.1.

7 DISCUSSION
Scalability to Other FMs. This work targets multi-modal FMs
based on embedding matching paradigms. EdgeFM deploys CLIP
and ImageBind, which are the most popular FMs in the category.
There are recent works proposed based on the similar matching
method, such as DetCLIPv2 [72] for detection, SAM [32] for seg-
mentation. We envision that EdgeFM’s collaboration between the
FMs and specialized small models and iteratively querying specific
knowledge from FMs can be extended to other FMs.

Change of Distribution. The machine learning models can be
formulated asY = 𝑓 (X). There is a set of existing works [2, 19, 41]
study the change of data distribution X. This paper focuses on
open-set learning on the edge, i.e., the dynamic change of class set
Y. In fact, the change of interested class set Y can be regarded
as a generalized distribution change, including the change of both
X and Y. Our evaluation in Section 6.2.2 implicitly shows that
EdgeFM can also well adapt to the distribution changes.
The Optimal Choice of Small Models. EdgeFM pre-stores a
model pool containing many common small model architectures
with diverse accuracy, FLOPS, memory, and latency. This pool also
includes architectures through Neural Architecture Search (NAS)
[17], such as EfficientNet [59]. Recent studies [40] have investigated
the utilization of NAS to look for the best student architecture
for the given teacher model during the KD process. They can be
integrated with EdgeFM to search for the most suitable small model
architecture for a given FM.
Applications with Labeled Calibration Data. EdgeFM focuses
on the applications without labeled data for calibration to eliminate
the overhead of manual labelling. Recent studies have shown that
the knowledge in FMs can be better evoked via parameter-efficient
fine-tuning (PEFT) approaches [24]. EdgeFM also supports work-
ing in the scenario when labeled data is available. In such a case,
EdgeFM first uses the labeled data to fine-tune FMs by PEFT on the
cloud. Then, the fine-tuned FM can further provide a knowledge
base service for small models to query.
Scalability to Other Sensor Modalities. EdgeFM supports other
time-series sensor data such as video, audio, and IMU. FMs used
by EdgeFM, i.e., ImageBind, can support diverse sensor modalities
with the corresponding pre-trained encoders. The techniques for
video streaming such as frame filtering [9], can also be integrated
with EdgeFM to improve the efficiency of processing time-series
vision data.

8 CONCLUSION
This paper proposes EdgeFM, a novel edge-cloud cooperative sys-
tem which empowers embedded systems with open-set recognition
ability by leveraging FMs for selective knowledge query and edge
model customization. EdgeFM maintains the overall performance
always close to the FM by dynamic model switching. Extensive
experiments show that EdgeFM can reduce the end-to-end latency
up to 3.2x and achieve 34.3% accuracy increase compared with the
baseline.

9 ACKNOWLEDGEMENT
This paper is supported in part by the Research Grants Council
(RGC) of Hong Kong under Collaborative Research Fund (CRF)
grants C4072-21G and C4034-21G, General Research Fund (GRF)
14214022, Faculty of Engineering of The Chinese University of Hong
Kong under Direct Grant 4055167, National Science Foundation of
China (NSFC) under Young Scientists Fund 62202407.

REFERENCES
[1] Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes,

Byron David, Chelsea Finn, Keerthana Gopalakrishnan, Karol Hausman, Alex
Herzog, et al. 2022. Do As I Can and Not As I Say: Grounding Language in
Robotic Affordances. In arXiv preprint arXiv:2204.01691.

EdgeFM: Leveraging Foundation Model for Open-set Learning on the Edge SenSys ’23, November 12–17, 2023, Istanbul, Turkiye

[2] Ali Akbari and Roozbeh Jafari. 2019. Transferring activity recognition models for
new wearable sensors with deep generative domain adaptation. In Proceedings of
the 18th International Conference on Information Processing in Sensor Networks.
85–96.

[3] Romil Bhardwaj, Zhengxu Xia, Ganesh Ananthanarayanan, Junchen Jiang, Yuan-
chao Shu, Nikolaos Karianakis, Kevin Hsieh, Paramvir Bahl, and Ion Stoica. 2022.
Ekya: Continuous learning of video analytics models on edge compute servers.
In 19th USENIX Symposium on Networked Systems Design and Implementation.
119–135.

[4] Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora,
Sydney von Arx, Michael S Bernstein, Jeannette Bohg, Antoine Bosselut, Emma
Brunskill, et al. 2021. On the opportunities and risks of foundation models. arXiv
preprint arXiv:2108.07258 (2021).

[5] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot learners. Advances in Neural
Information Processing Systems 33 (2020), 1877–1901.

[6] Qingqing Cao, Prerna Khanna, Nicholas D Lane, and Aruna Balasubramanian.
2022. MobiVQA: Efficient On-Device Visual Question Answering. Proceedings of
the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 6, 2 (2022),
1–23.

[7] Lingjiao Chen, Matei Zaharia, and James Zou. 2023. FrugalGPT: How to Use
Large Language Models While Reducing Cost and Improving Performance. arXiv
preprint arXiv:2305.05176 (2023).

[8] Shizhe Chen and Dong Huang. 2021. Elaborative rehearsal for zero-shot action
recognition. In Proceedings of the IEEE/CVF International Conference on Computer
Vision. 13638–13647.

[9] Tiffany Yu-Han Chen, Lenin Ravindranath, Shuo Deng, Paramvir Bahl, and Hari
Balakrishnan. 2015. Glimpse: Continuous, real-time object recognition on mobile
devices. In Proceedings of the 13th ACM Conference on Embedded Networked Sensor
Systems. 155–168.

[10] Wei-Yu Chen, Yen-Cheng Liu, Zsolt Kira, Yu-Chiang Frank Wang, and Jia-
Bin Huang. 2019. A closer look at few-shot classification. arXiv preprint
arXiv:1904.04232 (2019).

[11] Google Cloud and Vertex AI. 2021. [Online]. Available:
https://cloud.google.com/vertex-ai.

[12] Wenliang Dai, Lu Hou, Lifeng Shang, Xin Jiang, Qun Liu, and Pascale Fung.
2022. Enabling Multimodal Generation on CLIP via Vision-Language Knowledge
Distillation. In Findings of the Association for Computational Linguistics: ACL 2022.
Association for Computational Linguistics, Dublin, Ireland, 2383–2395.

[13] Deloitte. 2019. Edge AI chip shipments by device worldwide 2020 and 2024. https:
//www.statista.com/statistics/1084670/edge-ai-chips-shipment-worldwide/.

[14] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. In
Proceedings of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long and
Short Papers). Association for Computational Linguistics, Minneapolis, Minnesota,
4171–4186.

[15] Shuya Ding, Zhe Chen, Tianyue Zheng, and Jun Luo. 2020. RF-net: A unified
meta-learning framework for RF-enabled one-shot human activity recognition.
In Proceedings of the 18th Conference on Embedded Networked Sensor Systems.
517–530.

[16] Utsav Drolia, Katherine Guo, Jiaqi Tan, Rajeev Gandhi, and Priya Narasimhan.
2017. Cachier: Edge-caching for recognition applications. In 2017 IEEE 37th
International Conference on Distributed Computing Systems. IEEE, 276–286.

[17] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. 2019. Neural architecture
search: A survey. The Journal of Machine Learning Research 20, 1 (2019), 1997–
2017.

[18] Rohit Girdhar, Alaaeldin El-Nouby, Zhuang Liu, Mannat Singh, Kalyan Vasudev
Alwala, Armand Joulin, and Ishan Misra. 2023. Imagebind: One embedding space
to bind them all. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. 15180–15190.

[19] Taesik Gong, Yeonsu Kim, Jinwoo Shin, and Sung-Ju Lee. 2019. Metasense: few-
shot adaptation to untrained conditions in deep mobile sensing. In Proceedings of
the 17th Conference on Embedded Networked Sensor Systems. 110–123.

[20] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 770–778.

[21] Geoffrey Hinton, Oriol Vinyals, and Jeffrey Dean. 2015. Distilling the Knowl-
edge in a Neural Network. In NIPS Deep Learning and Representation Learning
Workshop.

[22] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingx-
ing Tan, Weijun Wang, Yukun Zhu, Ruoming Pang, Vijay Vasudevan, et al. 2019.
Searching for mobilenetv3. In Proceedings of the IEEE/CVF international conference
on computer vision. 1314–1324.

[23] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun
Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. 2017. Mobilenets:
Efficient convolutional neural networks for mobile vision applications. arXiv

preprint arXiv:1704.04861 (2017).
[24] Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu

Wang, Weizhu Chen, et al. 2021. LoRA: Low-Rank Adaptation of Large Language
Models. In International Conference on Learning Representations.

[25] Zhiming Hu, Ning Ye, and Iqbal Mohomed. 2022. mmSampler: Efficient Frame
Sampler for Multimodal Video Retrieval. Proceedings of Machine Learning and
Systems 4 (2022), 153–171.

[26] Kai Huang and Wei Gao. 2022. Real-time neural network inference on extremely
weak devices: agile offloading with explainable AI. In Proceedings of the 28th
Annual International Conference on Mobile Computing and Networking. 200–213.

[27] Md Tamzeed Islam and Shahriar Nirjon. 2019. Soundsemantics: exploiting seman-
tic knowledge in text for embedded acoustic event classification. In Proceedings
of the 18th International Conference on Information Processing in Sensor Networks.
217–228.

[28] Dugan Jon, Elliott Seth, Bruce A. Mah, Poskanzer Jeff, and Prabhu Kaustubh.
2014. iPerf. https://software.es.net/iperf/.

[29] Yiping Kang, Johann Hauswald, Cao Gao, Austin Rovinski, Trevor Mudge, Jason
Mars, and Lingjia Tang. 2017. Neurosurgeon: Collaborative intelligence between
the cloud and mobile edge. ACM SIGARCH Computer Architecture News 45, 1
(2017), 615–629.

[30] Mehrdad Khani, Ganesh Ananthanarayanan, Kevin Hsieh, Junchen Jiang, Ravi
Netravali, Yuanchao Shu, Mohammad Alizadeh, and Victor Bahl. 2023. RECL:
Responsive Resource-Efficient Continuous Learning for Video Analytics. In 20th
USENIX Symposium on Networked Systems Design and Implementation. 917–932.

[31] Minkyong Kim and Brian Noble. 2001. Mobile network estimation. In Proceedings
of the 7th Annual International Conference on Mobile Computing and Networking.
298–309.

[32] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura
Gustafson, Tete Xiao, Spencer Whitehead, Alexander C. Berg, Wan-Yen Lo, Piotr
Dollar, and Ross Girshick. 2023. Segment Anything. In Proceedings of the IEEE/CVF
International Conference on Computer Vision. 4015–4026.

[33] Ikki Kishida, Hong Chen, Masaki Baba, Jiren Jin, Ayako Amma, and Hideki
Nakayama. 2021. Object recognition with continual open set domain adaptation
for home robot. In Proceedings of the IEEE/CVF Winter Conference on Applications
of Computer Vision. 1517–1526.

[34] Stefanos Laskaridis, Stylianos I Venieris, Mario Almeida, Ilias Leontiadis, and
Nicholas D Lane. 2020. SPINN: synergistic progressive inference of neural net-
works over device and cloud. In Proceedings of the 26th Annual International
Conference on Mobile Computing and Networking. 1–15.

[35] Ilias Leontiadis, Stefanos Laskaridis, Stylianos I Venieris, and Nicholas D Lane.
2021. It’s always personal: Using early exits for efficient on-device CNN person-
alisation. In Proceedings of the 22nd International Workshop on Mobile Computing
Systems and Applications. 15–21.

[36] Min Li, Yu Li, Ye Tian, Li Jiang, and Qiang Xu. 2021. AppealNet: An efficient and
highly-accurate edge/cloud collaborative architecture for DNN inference. In 2021
58th ACM/IEEE Design Automation Conference. 409–414.

[37] Xiang Li, Xin Jiang, Xuying Meng, Aixin Sun, and Yequan Wang. 2023. FreeLM:
Fine-Tuning-Free Language Model. arXiv preprint arXiv:2305.01616 (2023).

[38] Xiwen Liang, Yangxin Wu, Jianhua Han, Hang Xu, Chunjing Xu, and Xiaodan
Liang. 2022. Effective adaptation in multi-task co-training for unified autonomous
driving. Advances in Neural Information Processing Systems 35 (2022), 19645–
19658.

[39] Edo Liberty, Zohar Karnin, Bing Xiang, Laurence Rouesnel, Baris Coskun, Ramesh
Nallapati, Julio Delgado, Amir Sadoughi, Yury Astashonok, Piali Das, et al. 2020.
Elastic machine learning algorithms in amazon sagemaker. In Proceedings of the
2020 ACM SIGMOD International Conference on Management of Data. 731–737.

[40] Yu Liu, Xuhui Jia, Mingxing Tan, Raviteja Vemulapalli, Yukun Zhu, Bradley Green,
and Xiaogang Wang. 2020. Search to distill: Pearls are everywhere but not the
eyes. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 7539–7548.

[41] Wenjie Luo, Zhenyu Yan, Qun Song, and Rui Tan. 2021. Phyaug: Physics-directed
data augmentation for deep sensing model transfer in cyber-physical systems.
In Proceedings of the 20th International Conference on Information Processing in
Sensor Networks. 31–46.

[42] Akhil Mathur, Anton Isopoussu, Nadia Berthouze, Nicholas D Lane, and Fahim
Kawsar. 2019. Unsupervised domain adaptation for robust sensory systems. In
Adjunct Proceedings of the 2019 ACM International Joint Conference on Perva-
sive and Ubiquitous Computing and Proceedings of the 2019 ACM International
Symposium on Wearable Computers. 505–509.

[43] Zili Meng, TingfengWang, Yixin Shen, BoWang, Mingwei Xu, Rui Han, Honghao
Liu, Venkat Arun, Hongxin Hu, and Xue Wei. 2023. Enabling High Quality Real-
Time Communications with Adaptive Frame-Rate. In 20th USENIX Symposium
on Networked Systems Design and Implementation. 1429–1450.

[44] Benjamin J Meyer and Tom Drummond. 2019. The importance of metric learning
for robotic vision: Open set recognition and active learning. In 2019 International
Conference on Robotics and Automation. IEEE, 2924–2931.

[45] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013.
Distributed representations of words and phrases and their compositionality.

https://www.statista.com/statistics/1084670/edge-ai-chips-shipment-worldwide/
https://www.statista.com/statistics/1084670/edge-ai-chips-shipment-worldwide/
https://software.es.net/iperf/

SenSys ’23, November 12–17, 2023, Istanbul, Turkiye B. Yang, L. He, N. Ling, Z. Yan, G. Xing, X. Shuai, X. Ren, and X. Jiang

Advances in Neural Information Processing Systems 26 (2013).
[46] Sanath Narayan, Akshita Gupta, Fahad Shahbaz Khan, Cees GM Snoek, and Ling

Shao. 2020. Latent embedding feedback and discriminative features for zero-shot
classification. In Computer Vision–ECCV 2020: 16th European Conference, Glasgow,
UK, August 23–28, 2020, Proceedings, Part XXII 16. Springer, 479–495.

[47] Maria-Elena Nilsback and Andrew Zisserman. 2008. Automated flower classifica-
tion over a large number of classes. In 2008 Sixth Indian Conference on Computer
Vision, Graphics & Image Processing. IEEE, 722–729.

[48] Wei Niu, Xiaolong Ma, Sheng Lin, Shihao Wang, Xuehai Qian, Xue Lin, Yanzhi
Wang, and Bin Ren. 2020. Patdnn: Achieving real-time dnn execution on mobile
devices with pattern-based weight pruning. In Proceedings of the Twenty-Fifth
International Conference on Architectural Support for Programming Languages and
Operating Systems. 907–922.

[49] Xiaomin Ouyang, Xian Shuai, Jiayu Zhou, Ivy Wang Shi, Zhiyuan Xie, Guoliang
Xing, and Jianwei Huang. 2022. Cosmo: contrastive fusion learning with small
data for multimodal human activity recognition. In Proceedings of the 28th Annual
International Conference on Mobile Computing And Networking. 324–337.

[50] Eunhyeok Park, Dongyoung Kim, Soobeom Kim, Yong-Deok Kim, Gunhee Kim,
Sungroh Yoon, and Sungjoo Yoo. 2015. Big/little deep neural network for ultra low
power inference. In 2015 International Conference on Hardware/Software Codesign
and System Synthesis. IEEE, 124–132.

[51] Karol J Piczak. 2015. ESC: Dataset for environmental sound classification. In
Proceedings of the 23rd ACM international conference on Multimedia. 1015–1018.

[52] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh,
Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark,
et al. 2021. Learning transferable visual models from natural language supervision.
In International Conference on Machine Learning. PMLR, 8748–8763.

[53] Dhruv Shah, Błażej Osiński, Sergey Levine, et al. 2023. Lm-nav: Robotic navigation
with large pre-trained models of language, vision, and action. In Conference on
Robot Learning. PMLR, 492–504.

[54] Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional networks
for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014).

[55] Shuran Song, Samuel P Lichtenberg, and Jianxiong Xiao. 2015. Sun rgb-d: A rgb-d
scene understanding benchmark suite. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. 567–576.

[56] Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah. 2012. UCF101: A
dataset of 101 human actions classes from videos in the wild. arXiv preprint
arXiv:1212.0402 (2012).

[57] Hongzu Su, Jingjing Li, Zhi Chen, Lei Zhu, and Ke Lu. 2022. Distinguishing unseen
from seen for generalized zero-shot learning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 7885–7894.

[58] Ximeng Sun, Pengchuan Zhang, Peizhao Zhang, Hardik Shah, Kate Saenko,
and Xide Xia. 2023. DIME-FM: Distilling Multimodal and Efficient Foundation
Models. In Proceedings of the IEEE/CVF International Conference on Computer
Vision. 15521–15533.

[59] Mingxing Tan and Quoc Le. 2019. Efficientnet: Rethinking model scaling for
convolutional neural networks. In International Conference on Machine Learning.
PMLR, 6105–6114.

[60] MLC team. 2023. MLC-LLM. https://github.com/mlc-ai/mlc-llm
[61] Catherine Tong, Jinchen Ge, and Nicholas D Lane. 2021. Zero-shot learning for

imu-based activity recognition using video embeddings. Proceedings of the ACM
on Interactive, Mobile, Wearable and Ubiquitous Technologies 5, 4 (2021), 1–23.

[62] Sathish Vallachira, Michal Orkisz, Mikael Norrlöf, and Sachit Butail. 2019. Data-
driven gearbox failure detection in industrial robots. IEEE Transactions on Indus-
trial Informatics 16, 1 (2019), 193–201.

[63] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in Neural Information Processing Systems 30 (2017).

[64] Yiding Wang, Kai Chen, Haisheng Tan, and Kun Guo. 2023. Tabi: An Efficient
Multi-Level Inference System for Large Language Models. In Proceedings of the
Eighteenth European Conference on Computer Systems. 233–248.

[65] Yixuan Wei, Han Hu, Zhenda Xie, Zheng Zhang, Yue Cao, Jianmin Bao, Dong
Chen, and Baining Guo. 2022. Contrastive learning rivals masked image modeling
in fine-tuning via feature distillation. arXiv preprint arXiv:2205.14141 (2022).

[66] Jiaxiang Wu, Cong Leng, Yuhang Wang, Qinghao Hu, and Jian Cheng. 2016.
Quantized convolutional neural networks for mobile devices. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition. 4820–4828.

[67] Huang Xie and Tuomas Virtanen. 2021. Zero-shot audio classification via se-
mantic embeddings. IEEE/ACM Transactions on Audio, Speech, and Language
Processing 29 (2021), 1233–1242.

[68] Huatao Xu, Pengfei Zhou, Rui Tan, Mo Li, and Guobin Shen. 2021. Limu-bert:
Unleashing the potential of unlabeled data for imu sensing applications. In
Proceedings of the 19th ACM Conference on Embedded Networked Sensor Systems.
220–233.

[69] Mengwei Xu, Mengze Zhu, Yunxin Liu, Felix Xiaozhu Lin, and Xuanzhe Liu. 2018.
Deepcache: Principled cache for mobile deep vision. In Proceedings of the 24th
Annual International Conference on Mobile Computing and Networking. 129–144.

[70] Bufang Yang, Wenxuan Wu, Yitian Liu, and Hongxing Liu. 2022. A novel sleep
stage contextual refinement algorithm leveraging conditional random fields. IEEE
Transactions on Instrumentation and Measurement 71 (2022), 1–13.

[71] Bufang Yang, Xilin Zhu, Yitian Liu, and Hongxing Liu. 2021. A single-channel
EEG based automatic sleep stage classification method leveraging deep one-
dimensional convolutional neural network and hiddenMarkov model. Biomedical
Signal Processing and Control 68 (2021), 102581.

[72] Lewei Yao, Jianhua Han, Xiaodan Liang, Dan Xu, Wei Zhang, Zhenguo Li, and
Hang Xu. 2023. Detclipv2: Scalable open-vocabulary object detection pre-training
via word-region alignment. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. 23497–23506.

[73] Shuochao Yao, Jinyang Li, Dongxin Liu, Tianshi Wang, Shengzhong Liu, Huajie
Shao, and Tarek Abdelzaher. 2020. Deep compressive offloading: Speeding up
neural network inference by trading edge computation for network latency.
In Proceedings of the 18th Conference on Embedded Networked Sensor Systems.
476–488.

[74] Mu Yuan, Lan Zhang, Fengxiang He, Xueting Tong, and Xiang-Yang Li. 2022. Infi:
end-to-end learnable input filter for resource-efficient mobile-centric inference.
In Proceedings of the 28th Annual International Conference on Mobile Computing
And Networking. 228–241.

[75] Chaoning Zhang, Dongshen Han, Yu Qiao, Jung Uk Kim, Sung Ho Bae, Seungkyu
Lee, and Choong Seon Hong. 2023. Faster Segment Anything: Towards Light-
weight SAM for Mobile Applications. arXiv preprint arXiv:2306.14289 (2023).

[76] Zhihe Zhao, Kai Wang, Neiwen Ling, and Guoliang Xing. 2021. Edgeml: An
automl framework for real-time deep learning on the edge. In Proceedings of
the International Conference on Internet-of-Things Design and Implementation.
133–144.

https://github.com/mlc-ai/mlc-llm

	Abstract
	1 Introduction
	2 Background and RELATED WORK
	2.1 Multi-Modal Foundation Models
	2.2 Related Works

	3 Motivation: A Case Study
	3.1 Cloud-centric FM services
	3.2 Understanding FMs and SMs
	3.3 Customization with FMs

	4 Application and System Overview
	4.1 Application Scenarios
	4.2 System Architecture

	5 Design of EdgeFM
	5.1 Knowledge Query and Customization
	5.2 Dynamic Edge Update
	5.3 EdgeFM Inference Engine
	5.4 System Implementation

	6 Evaluation
	6.1 Applications and Datasets
	6.2 An End-to-End Application
	6.3 Overall Performance of EdgeFM
	6.4 Understanding EdgeFM's Performance

	7 Discussion
	8 Conclusion
	9 Acknowledgement
	References

