
Moses: Exploiting Cross-device Transferable Features for
On-device Tensor Program Optimization

Zhihe Zhao†, Xian Shuai†, Neiwen Ling†, Nan Guan§, Zhenyu Yan†, and Guoliang Xing†,∗
†The Chinese University of Hong Kong, Hong Kong SAR, China

§City University of Hong Kong, Hong Kong SAR, China

ABSTRACT
Achieving efficient execution of machine learning models on mo-
bile/edge devices has attracted significant attention recently. A key
challenge is to generate high-performance tensor programs for each
operator inside a DNN model efficiently. To this end, deep learn-
ing compilers have adopted auto-tuning approaches such as Ansor.
However, it is challenging to optimize tensor codes for mobile/edge
devices by auto-tuning due to limited time budgets and on-device
resources. A key component of DNN compilers is the cost model
that can predict the performance of each configuration on specific
devices. However, current design of cost models cannot provide
transferable features among different hardware accelerators effi-
ciently and effectively. In this paper, we propose Moses, a simple
yet efficient design based on the lottery ticket hypothesis, which
fully takes advantage of the hardware-agnostic features transfer-
able to the target device via domain adaptation to optimize the
time-consuming auto-tuning process of DNN compiling on a new
hardware platform. Compared with state-of-the-art approaches,
Moses achieves up to 1.53X efficiency gain in the search stage and
1.41X inference speedup on challenging DNN benchmarks.

CCS CONCEPTS
• Computer systems organization→ Real-time System.

KEYWORDS
Efficient DNN Processing, DNN Compiler, Transfer Learning

1 INTRODUCTION
Efficient inference of deep neural networks (DNN) is of great impor-
tance for real-time AI applications such as autonomous driving and
augmented reality, which usually run on embedded devices with
limited computation resources [18, 26, 27]. Existing approaches rely
on hand-optimized acceleration libraries, e.g., NVIDIA cuDNN [22]
and Intel MKL [10]. However, they are vendor-specific, and thus
cannot support a wide range of diverse hardware devices. Deep
learning compilers can enable high-performance code generation
for various models on different hardware automatically. During

*Corresponding email: glxing@cuhk.edu.hk.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
HotMobile ’23, February 22–23, 2023, Newport Beach, CA, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0017-0/23/02. . . $15.00
https://doi.org/10.1145/3572864.3580330

Block Factor

A

B
X

C
for (m,outer, 0, ..)
 for (n.outer, 0, ..)
 for (m.inner, 0, ..)
 for (n.inner, 0, ..)
 c[...] = 0
 for (k.outer, 0, ..)
 for (k.inner, 0, ..)
 for (m.inner, 0, ..)
 for (n.inner, 0, ..)
 C[..] = (...)

for (m, 0, M)
 for (n, 0, N)
 for (k, 0, K)
 C[..] = (C[..] + (A[..]*B[..]))

MM Without Blocking

MM With Blocking

Parameters To
Be Determined

GPUCPU

Accelerator

Figure 1: Matrix Multiplication of A and B, and the generated
lowering intermediate results corresponding to with/without
cache blocking (based on tvm.lower() provided by TVM [6]).

compilation, the deep learning model is first transformed into a
computation graph, where each node in the graph represents an
operator, and each edge represents the data flow. The computation
graph is then partitioned into subgraphs according to the fusion op-
portunity among DNN kernels [20, 21]. Finally, the automatic code
generation process produces high-performance execution codes for
each subgraph. Typically, the tensor computations inside most DNN
operators such as convolutional kernel are implemented by a set
of compute-intensive nested loops. To accelerate kernel inference
speed at the for-loop level, we need to maximize the corresponding
intra-operator parallelism. One common method is to use cache-
blocking strategies, which break the computation down into man-
ageable chunks to enhance the cache hit rate [16]. As an example,
we now discuss a simple Matrix Multiplication case, which is itera-
tively processed inside a convolutional kernel and can be performed
on heterogeneous hardware platforms with the same computation
pattern. As shown in Figure 1, the data chunk is computed block
by block, inside of which the memory accesses are grouped within
a small neighborhood to leverage the memory locality. The opti-
mal block size can be automatically determined by DNN compilers
such as TVM [6]. Generating such high-performance tensor pro-
grams from a given high-level expression is extremely difficult, as
the optimal organization and the parameters of the for-loops vary
significantly for different devices. Therefore, to accelerate the end-
to-end model inference on various hardware platforms, existing
DNN compilers first generate a large space of candidate configu-
rations and then search for the optimal one based on on-device
profiling [5]. This process is referred to as auto-tuning [29].

Although DNN compilers can produce optimized programs for
DNN models on specific platforms to accelerate the end-to-end
model inference, the compilation process of each model requires ex-
cessively long search time, especially on mobile and edge devices. For
example, the auto-tuning time for a ResNet-18 of AutoTVM [5]
can take up to tens of hours on edge devices like NVIDIA Jetson

https://doi.org/10.1145/3572864.3580330

HotMobile ’23, February 22–23, 2023, Newport Beach, CA, USA Zhihe Zhao† , Xian Shuai† , Neiwen Ling† , Nan Guan§ , Zhenyu Yan† , and Guoliang Xing†,∗

TX2. During the compilation, an auto-tuner needs to run differ-
ent code combinations on the target hardware to find the optimal
tensor program with minimal execution time, which varies a lot
among different edge platforms. Hence, if a model tuned on powerful
server-level platforms was directly deployed on embedded devices, the
inference speed would be extremely slow.

As auto-tuning is time consuming, it is impossible to measure
the latency of all tensor program candidates on the hardware plat-
form. To reduce the time consumption of on-device measurements,
the tensor program optimizer employs a cost model to estimate
the performance of the potential candidates in the search space
[3]. However, training a cost model offline still requires a large
number of measurements on each specific edge platform. For in-
stance, Tenset [30] provides a tensor program performance dataset
collected from 6 devices, containing 52 million program perfor-
mance records. Based on this dataset, the online search time can
be reduced without sacrificing the quality of optimized tensor pro-
grams. However, when two hardware platforms differ significantly
in architecture, such a vanilla fine-tuning approach would fail to
learn the run-time behaviors of a new device, and hence performs
poorly at run time.

Previous efforts trying to address this challenge mainly focus on
either designing a new cost model to search over the large space of
tensor program transformation choices [4, 13, 25] or exploring effec-
tive search algorithms during auto-tuning [2, 15]. However, these
approaches still need large numbers of iterations for hardware-
dependent measurements during the search. Additionally, for edge
devices, achieving low inference latency should be treated as the
first citizen while the search efficiency should also be considered.
This poses another challenge: how to minimize the time budget
for online learning of the cost model compared to other domain
adaptation methods while ensuring or even improving the quality
of searched tensor programs for a DNN kernel. Motivated by these
challenges, we propose Moses, a novel cost model adaptation frame-
work based on the lottery ticket hypothesis [8], which can adapt
the trained cost model from a source device to a new target device with
high efficiency. A key observation in our paper is that the source
feature space of our cross-device cost model transfer learning prob-
lem can be divided into hardware-aware and hardware-agnostic
domains. This motivates us to design a novel transfer learning
method for cross-device program optimization by distilling trans-
ferable and non-transferable model parameters to minimize the
domain discrepancy in an efficient and adaptive manner. We sum-
marize the contributions of this work as follows:

1) To the best of our knowledge, Moses is the first work that can
achieve highly efficient auto-tuning among different hard-
ware platforms based on transfer learning. Moses enables
the DNN compiler to generate optimized tensor programs
with significantly shorter search time for a new device.

2) We propose a novel approach that can automatically identify
the transferable hardware-independent parameters of a pre-
trained cost model, and achieve cross-device cost model
adaption via fine-tuning.

3) We conduct comprehensive experiments and show thatMoses
is a general and effective approach for diverse hardware plat-
forms and DNNs.

DNN Model

Subgraph 1 Subgraph 2

High-level mathematical
expression:

Tensor Program
Sampler

Cost Model

Tensor Program
Configurations

...

Graph-level
Optimization

Each
Subgraph

Partition

Subgraph 3

Auto-Search Engine

Cost Model
Predictions

&
On-device

Measurement

N
ew

 R
ecords

Trained Cost Model
on Source Device

Lottery-ticket based
Domain Adaptation

Optimal Tensor Program
Configuration

Figure 2: The pipeline of automatic tensor program genera-
tion for a given DNN model. The green and blue boxes are
the main contributions of Moses.

2 RELATEDWORK
DNN Compilers. General DNN compilers optimize the compu-
tation flow of DNN tasks on two levels: graph level and tensor
level. Some notable compilers are TVM [6], TASO [11], XLA [1]
and Halide [17]. These compilers either utilize compiler techniques
such as graph substitutions to optimize the intermediate represen-
tation (IR) level graph or focus on tensor program optimization
using learning-based algorithms. Building on these DNN compilers,
recent works treat the optimization process as a black box and pro-
pose some advanced searching or cost model training approaches
based on run-time information [5][2].

Auto-Tuning with Cost Models. Figure 2 shows the pipeline
of a search-based low-level tensor code generation used by TVM [6].
The neural network is first partitioned by the graph-level optimizer.
The search algorithm will search for the optimal low-level tensor
implementation for each subgraph. Usually, the search space is in
the order of millions for CPUs and billions for GPUs, as there are
a variety of schedule primitives such as tiling and thread binding
[6, 28]. On the one hand, such a large search space enables the
automatic tensor compiler to find the program that is better than
the hand-optimized implementation. On the other hand, the large
search space can incur significant search time, especially on embed-
ded devices. To accelerate the searching process, TVM introduces
the ML-based cost model to directly predict the time cost of the
innermost non-loop program rather than extensively measuring
the program’s run-time. In this paper, we adopt the 164-𝑑 features
in Ansor [29] to represent the program.

Cross-Device CostModel Adaptation.Amajor practical draw-
back of the current automatic tensor program optimization ap-
proach [5] is the extremely long search time. Recent work such as
[2, 24] provides a breakdown of the search time and shows that the
time for on-device measurements dominates. Therefore, a solution
to shorten the online searching time is to collect a comprehen-
sive tensor program performance dataset offline, and pre-train a
cost model that can be directly utilized [30]. However, the cost
model is device-specific, as its input features include configuration
knobs that are closely related to the hardware architecture such as
the size of BlockIdx and ThreadIdx. When two architectures are

Moses: Exploiting Cross-device Transferable Features for On-device Tensor Program Optimization HotMobile ’23, February 22–23, 2023, Newport Beach, CA, USA

significantly different (e.g., edge GPUs and mobile GPUs), the tradi-
tional vanilla transfer learning approach may fail. During vanilla
transfer learning, excessive unnecessary hardware-aware domain
knowledge is involved, which slows down the cost model conver-
gence. MTL-TLP [24] proposes to use multi-tasking techniques to
address the unavailability of cross-hardware cost models. The key
idea is to use a small amount of target hardware data to train a
cost model with high performance. However, the online collected
hardware-dependent features are still hand-crafted with heavy fea-
ture engineering. They cannot be easily ported to new hardware,
especially those with huge hardware architecture gaps.

3 MOSES
3.1 Problem Formulation
The Auto-tuning process in a DNN compiler aims to generate a
large search space of tensor program configurations and to find
the optimal one based on the on-device performance measurement
records [6]. During the search process in auto-tuning, the compiler
picks the top-k (where𝑘 can be one) programswith the performance
predictions from the cost model for each task. The process can
utilizemixed on-devicemeasurements and costmodel predictions. If
the on-device measurement cost is large, the process can completely
rely on the cost model.

Formally, we let Function Perf denotes the hardware run-time
measurement on latency (i.e., the performance); Ψ the set of pos-
sible tensor program configurations of a task which consists of a
combination of parameters called knobs; 𝑡 the transformation pass
representing the tensor program; 𝑔 the tensor programs generating
functions with knobs and the transformation pass as inputs. Thus,
given an input subgraph, the objective of the auto-tuning process
is finding the optimal combination of knobs 𝜓∗ to maximize the
performance defined as𝜓∗ = argmin𝜓 ∈Ψ 𝑃𝑒𝑟 𝑓 (𝑔(𝜓, 𝑡)). Precise es-
timation of the performance of the tensor program can effectively
reduce the time-consuming on-device measurements, especially
for embedded or mobile devices. For example, on an NVIDIA TX2,
the total on-device measurement time of a VGG16 model can be
up to 10 hours. Thus, the objective of the cost model is to min-
imize the difference between the predictions and the real-world
measurements, which is:

Θ = argmin
\

∥𝐶 (𝑔(𝜓, 𝑡) |\) − 𝑃𝑒𝑟 𝑓 (𝑔(𝜓, 𝑡))∥,𝜓 ∈ Ψ (1)

Here, function C denotes the cost model predictions on code per-
formance and \ represents the weights of the trained cost model.

In this paper, we aim to find a newweightΘ† of the cost model for
the target device based on the existingΘ obtained on source devices.
In an adaptive manner, the cross-device cost model adaptation can
guide the auto-search engine to generate more optimized codes of
each subgraph more efficiently, for the target device.

3.2 Design of Moses
We propose Moses, a novel cross-device cost model transfer ap-
proach based on the lottery ticket hypothesis [8]. As shown in
Figure 3, we transfer the cost model trained on source devices (e.g.,
Server GPUs) to target devices (e.g., mobile GPUs) by only fine-
tuning part of the model parameters while keeping the rest of the
parameters deactivated. The rationale of our design is two-fold.

Tensor Program Configurations

T
hr

ou
gh

pu
t

Trained Cost model A

Objective: Cross-device Transfer
& Adapt Cost Model Efficiently

Adapted Cost Model B

Real Measurements on
Target Device

Cost Model A Trained
Offline with Data

Collected on Source
(e.g. GTX2060)

Real Measurements on
Source Device

Domain-variant parameters

Domain-invariant parameters

Cost model B
Adapted from A
on Target Device
(e.g. NVIDIA TX2)

Figure 3: Given a cost model A trained on the source device,
we aim to obtain a cost model B that can accurately predict
the throughput of the target device under various tensor
program configurations.

First, to accelerate the online search instead of collecting a dataset
for every new device offline, we need to take advantage of the cost
model pre-trained on source devices rather than training a new
model from scratch. Second, as vanilla fine-tuning approaches may
fail due to substantial architecture changes, we have to utilize the
prior knowledge from the pre-trained cost model wisely.

In our problem, the feature space is independent of hardware
architecture while the outputs of the cost model (throughput pre-
dictions for different tensor program configurations) are dependent,
shown as:

𝐻 {𝒳} ≡ 𝐻 {𝒳𝐼𝑛𝑑 } + 𝐻
{
𝒳𝐷𝑒𝑝

}
(2)

where𝐻 maps to the hidden feature space representations,𝒳𝐼𝑛𝑑 and
𝒳𝐷𝑒𝑝 present the decoupled feature space: hardware-independent
information such as programunrolling factor and hardware-dependent
information such as used memory of a non-loop innermost state-
ment, respectively [29].

3.3 Lottery-Ticket-Based Cross-Device
Adaptation

In order to solve this problem, we propose to leverage the following
lottery ticket hypothesis in this paper: only part of the parameters
in the trained cost model on source devices are essential for learning
hardware-independent knowledge. In other words, Only part of the
information needs to be adapted to the target device while other
parameters tend to fit the domain. Based on this hypothesis, we can
transform our problem into the following question: How to learn
domain invariant parameters to minimize the domain discrepancy
brought by the hardware difference?

The training data for cost model updating is collected online
during the search, which makes the search very time-consuming
due to inevitable on-device measurements. We denote by 𝑥 the ten-
sor program optimization knobs, 𝑦 the corresponding throughput
of 𝑥 . Thus, we can define a set of labeled tensor program records
on source device 𝐷𝑆 by 𝑆 = {(𝑥𝑖𝑠 , 𝑦𝑖𝑠)}, where 𝑖 is the 𝑖𝑡ℎ record.
Now given a target unlabeled program performance records set
𝑇 = {(𝑥 𝑗

𝑇
)} with different configurations of program knobs 𝑥 sam-

pled from target device 𝐷𝑇 , in which a small records set 𝑇
′
can be

collected by on-device measurements (which are conducted typi-
cally under a given time budget). Formally, The expected domain
adaptation error on the target device can be defined as Y (ℎ(Θ†))

HotMobile ’23, February 22–23, 2023, Newport Beach, CA, USA Zhihe Zhao† , Xian Shuai† , Neiwen Ling† , Nan Guan§ , Zhenyu Yan† , and Guoliang Xing†,∗

Initial Network

 Iterative
Training

Lottery(Winning)
Ticket

 Reduce Computations
Maintain Accuracy
Partial Parameters Matter

Transferable
Feature Extractor

Activated Neurons Inactivated Neurons

1

2
3

4

5

6
7

1
2

3

4

Search Space that Contains
Optimal Compiling Configurations

 Less Iterations to Reach the
Target Search Space

Domain (Hardware-aware/
agnostic) Discrepency

Figure 4: Illustration of the lottery ticket hypothesis and
cross-device auto-tuning optimization. The left part shows
the original hypothesis applied to model compression. The
middle part shows howMoses is motivated by the hypothesis,
and the right part shows the decrease in searching iterations
due to the reduction of search space.

where ℎ is a hypothesis learned from the target or the source do-
main. Thus the following inequity holds:

Y (ℎ𝑇𝑎𝑟𝑔𝑒𝑡 (Θ†)) ≤ Y (ℎ𝑆𝑜𝑢𝑟𝑐𝑒 (Θ∗)) + 𝑑𝑖𝑠𝑡 (𝐷𝑆 (𝒳), 𝐷𝑇 (𝒳)), (3)
We adopt the same notation in [19] to define 𝑑𝑖𝑠𝑡 as the distribution
discrepancy distance between the cross-device domains. The fea-
ture representations are influenced by hardware differences in our
problem. To achieve the cross-device domain adaptation, instead of
minimizing the distance between feature representations and their
resulting data distribution discrepancy, we show the effectiveness of
the boundminimization strategy in solving the cross-device domain
adaptation. We propose to find the bound limitation by optimizing
the labeling black-box functions. Such an approach is inspired by
the lottery ticket hypothesis, which was originally proposed in the
context of model compression, showing that only part of the pa-
rameters is fit for model generalization [8]. We show in this paper
that the same hypothesis is applicable to our problem (see Section
4). That is, there exists a super-subnet, named winning ticket, with a
set of essential parameters of the trained cost model on source devices,
which would be the domain invariant information. In other words,
training from a super-subnet on the target device would achieve
the optimal transfer performance in our cross-device domain adap-
tation problem. To answer the question of why the lottery-ticket
hypothesis works, the key insight here is that the factors that affect
the overall performance of DNN compiling can be divided into two
categories: hardware-agnostic factors and hardware-aware factors.
As illustrated in Figure 4, the idea of iterative pruning to find the
“winning ticket“ model structure in the lottery ticket hypothesis
can be leveraged to address our problem, that is, finding the do-
main discrepancy between two auto-tuning search processes on the
two hardware platforms. For each iteration of the tensor program
sampling-search of optimization knobs, the cost model with more
portions of domain transferable features is more easily to step close
to the target search space, as shown in the right part of Figure 4.

We refer to parameters in these super-subnets as transferable
parameters and the remaining set of parameters as untransferable
parameters. A key question is how to distill these transferable pa-
rameters during each subgraph auto-tuning stage. We identify the
distilling boundary criterion b (𝑝ℎ) as |𝑤 (𝑝ℎ) ∗ ∇𝑤 (𝑝ℎ) | where 𝑝ℎ

is the tuning phase of the subgraphs,𝑤 (𝑝ℎ) represents the parame-
ter weights and its gradient is ∇𝑤 (𝑝ℎ). If b (𝑝ℎ) is larger than a cer-
tain threshold 𝜗 (e.g., 0.5), the corresponding𝑤 (𝑝ℎ) can be viewed
as transferable parameters. In contrast,𝑤 (𝑝ℎ) would be regarded as
domain-variant parameters if b (𝑝ℎ) is small(e.g., close to zero). We
iteratively update the boundary of domain-invariant parameters as
well as variant parameters and update these invariant ones during
each online training epoch to learn invariant representations to
achieve minimization of bound limitation. Lastly, we adopt the ad-
versarial loss training objective function inspired from [9], in such
a way, the parameters with higher gradient flows, representing
more benefits to the domain-invariant information learning pro-
cess, are considered. As for the parameters that represent domain
variant information, We update these parameters with a weight
decay mechanism as a penalty, which is defined as:

𝑤𝑣 (𝑝ℎ + 1) → 𝑤𝑣 (𝑝ℎ) − 𝛼 (𝑤𝑑 (𝑤𝑣 (𝑝ℎ))) (4)
where 𝛼 is the learning rate,𝑤𝑣 (𝑝ℎ) represents the domain-variant
parameters and function𝑤𝑑 represents the weight decay process
for each updating phase.

3.4 Adaptive Tuning Data Partition
To gather on-device measurements efficiently and maintain the
performance of the online domain adaptation cost model, we use
an adaptive controller (AC) module to early terminate the hardware
tuning data collection stage. The basic idea of AC is to statisti-
cally analyze the certainty of the online training cost model. For
a given subgraph 𝑠 which is to be tuned, we initially divide the
total tuning tasks into tuning tasks for online training 𝑡𝑡𝑟𝑎𝑖𝑛 with
hardware measurement data collection and tuning tasks for cost
model predictions 𝑡𝑝𝑟𝑒𝑑 with a ratio of 𝑝 . We further divide 𝑡𝑡𝑟𝑎𝑖𝑛
into 𝑞 ∈ 1, 2, .., 𝑞 batches and collect both on-device measurement
records𝐶 (𝑡𝑡𝑟𝑎𝑖𝑛 (𝑠)) and (𝑡𝑡𝑟𝑎𝑖𝑛 (𝑠)). Then, we use the coefficient of
variations (the standard deviation divided by the mean) formulated
as 𝐶𝑉 =

𝜎 (𝐶 (𝑡𝑡𝑟𝑎𝑖𝑛 (𝑠))1,𝐶 (𝑡𝑡𝑟𝑎𝑖𝑛 (𝑠))2 ..𝐶 (𝑡𝑡𝑟𝑎𝑖𝑛 (𝑠))𝑞)
` (𝐶 (𝑡𝑡𝑟𝑎𝑖𝑛 (𝑠))1,𝐶 (𝑡𝑡𝑟𝑎𝑖𝑛 (𝑠))2 ..𝐶 (𝑡𝑡𝑟𝑎𝑖𝑛 (𝑠))𝑞) to dynamically

estimate the certainty of the existing cost model, and terminate the
hardware measurement phase in advance if the value is smaller
than a certain value. We empirically set these hyper-parameters
based on multiple trials in our experiments.

3.5 Putting Everything Together
In previous sections, we described the design details of the lottery-
ticket-based cross-device cost model transfer and the adaptive on-
line training data partition mechanism. We now put these compo-
nents together and summarize the working flow of Moses.

Step 1. Pre-training a cost model on the source device: We
pre-train a cost model offline using the dataset of on-device mea-
surement records from the source device. This dataset includes
randomly generated tensor programs for wide deep learning mod-
els.

Step 2. Transferring the trained model to the target device:
The learned cost model from the source device is directly transferred
to the target device in this step, which guides the search stage during
auto-tuning.

Step 3. Adaptive training data partition with the AC mod-
ule: We directly apply the learned cost model from the source

Moses: Exploiting Cross-device Transferable Features for On-device Tensor Program Optimization HotMobile ’23, February 22–23, 2023, Newport Beach, CA, USA

E2E MODEL LATENCY REDUCTION

SqueezeNet
0

0.2
0.4
0.6
0.8
1.0
1.2

1.4
1.6

MobileNet ResNet18 BERT-Base
K80 to RTX2060

SqueezeNet MobileNet ResNet18
K80 to TX2

Raw Inference

Tenset Finetune

Ansor Random

Moses

Tenset Pretrain

Linear (Tenset Finetune)

0.26

0.60

0.85

1.28

0.09

0.48

0.75

1.24

0.47

0.78
0.70

1.10

0.55

0.78

0.93

1.41

0.41
0.53

0.73

1.24

0.26 0.27

0.82

1.26 1.24

0.92
0.87

0.79

SEARCH EFFICIENCY GAIN

SqueezeNet
0

0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

MobileNet ResNet18 BERT-Base
K80 to RTX2060

SqueezeNet MobileNet ResNet18
K80 to TX2

Tenset FinetuneAnsor Random

Moses

Tenset Pretrain

Linear (Tenset Finetune)

1.27

1.08

1.21
1.15 1.10

1.38

1.21 1.21

1.48

1.15 1.16

1.49

1.18
1.23

1.38

1.21 1.21

1.59

1.31

1.15

1.31

Figure 5: End-to-end DNN model inference latency reductions and auto-tuning search efficiency gain comparisons among
MobileNet, ResNet18, BERT-Base, and SqueezeNet over two domain adaptation baselines.

device to the target device, to guide the search stage during auto-
tuning. For each tuning task, we dynamically control the hardware
measurement costs by using the AC module, where the portion of
on-device measurements can be adjusted based on the evaluation
results of cost model performance in that epoch.

Step 4. Online updating of the cost model with iterative
pruning: For each tuning task, we divide the parameters of the
cost model into domain-invariant ones and domain-variant ones
based on the calculation of b (𝑖), and update the domain-invariant
parameters with gradient decent while letting the rest gradually
decrease to zero through weight decay.

During the auto-tuning process, Moses keeps updating the cost
model in an adaptive and iterative manner based on the collected
hardware measurement records, while the search algorithms keep
querying the newest cost model for efficient explorations of optimal
program configurations.

4 EXPERIMENTS
In this section, we evaluate the effectiveness and efficiency of
Moses, with our proposed lottery-ticket based cost model adap-
tation method. We implement Moses as a plug-in cross-device cost
model adaptation tool in TVM auto-tuning [6]. Specifically, the cost
model fine-tuning is integrated with the tensor programs random
sampling and an evolutionary search algorithm [29]. The training
of the cost model is implemented in PyTorch. We set the max epoch
to 30. We set the initial learning rate 𝑎𝑙𝑝ℎ𝑎 to 0.001, and the distill-
ing boundary criterion threshold 𝜗 to 0.5. Most of these parameters
we set are adopted from Ansor [29] and Tenset [30] except the
transferable parameter ratio. We conduct each experiment 10 times
and record the corresponding results. The dataset and codes in this
paper are available at https://github.com/Kyrie-Zhao/Moses.

4.1 Experimental Settings
Our experiments are conducted on NVIDIA GeForce GTX 2060 and
NVIDIA Jetson TX2 with Pascal GPU architecture with 256 NVIDIA
CUDA cores. We include four DNN models in our experiments:
ResNet-18, MobileNet, BERT-base, and SqueezeNet. We use the
default settings for other hyper-parameters provided by Ansor [29].
As for the backbone of the cost model, we choose the representative
one used inAnsor, which is anMLPwith two hidden layers, with 512
neurons for each. The two domain adaptation tasks we validate are
𝐾80 → 2060 and 𝐾80 → 𝑇𝑋2. Considering BERT-base is usually
deployed in cloud service due to its large model size, we do not
include it in the 𝐾80 → 𝑇𝑋2 experiment. We use the end-to-end

Table 1: Comparisons of CMAT under different trials. S, R,
M, and B refer to DNNs mentioned in Fig. 5.

CMAT (%) 2060-S 2060-R 2060-M 2060-B
Small Trials (200)
Large Trials (20000)

57.2
48.1

19.6
32.7

105
45.8

66.7
87.4

CMAT (%) TX2-S TX2-R TX2-M
Small Trials (200)
Large Trials (20000)

28.7
44.7

66.4
53.1

64.5
45.9

latency/throughput and the end-to-end search efficiency of auto-
tuning as evaluation metrics. Specifically, we measure the obtained
speedups of tuned tensor programs and the reductions of searching
time of an input DNN model over other baselines including the
state-of-art cost model transfer method provided in Tenset. We also
introduce a concept named Cost Model & Auto-tuning Efficiency
Gain Score (CMAT) to evaluate the cost model influence on the
end-to-end inference performance at the same time, defined as:
CMAT = (Gain on Search Efficiency * Reduction on Tuned Model
Latency-1)*100%. As CMAT considers both search efficiency and
end-to-end inference latency, it is an effective metric for evaluating
the overall cross-device cost model adaptation performance.

4.2 Results
We compare Moses with four baselines: 1). Raw: inference based on
vendor-supplied libraries (e.g. NVIDIA cuDNN). 2). Ansor-Random
[29]: randomly initialize the cost model and train it from scratch
during the auto-tuning. 3). Tenset-Pretrain: pre-train a cost model
on Tenset dataset and directly apply it to the target device without
fine-tuning. 4). Tenset-Finetune: utilize the cost model pre-trained
on Tenset dataset and then perform the vanilla online fine-tuning.
4.2.1 Inference Time & Search Efficiency Comparisons. Fig. 5 shows
the comparison of the final end-to-end inference time of the input
DNN model optimized on each baseline. Moses achieves up to
41.1% faster inference speed over Tenset-Finetune and up to 53%
higher speed over Tenset-Pretrain on the 𝐾80 → 2060 baseline.
Moses also achieves up to 26.2% over Tenset-Finetune and up to
52% over Tenset-Pretrain on the 𝐾80 → 𝑇𝑋2 baseline, respectively.
Overall, Moses yields the best inference performance among all
other configurations and algorithms. Fig. 5 shows the auto-tuning
search efficiency gains comparisons over these baselines. Moses also

HotMobile ’23, February 22–23, 2023, Newport Beach, CA, USA Zhihe Zhao† , Xian Shuai† , Neiwen Ling† , Nan Guan§ , Zhenyu Yan† , and Guoliang Xing†,∗

0.01
0.5

0.6

0.8

1.0

0.3

K80 to RTX2060 K80 to TX2

TRANSFERABLE PARAMETER RATIOS
EVALUATION

0.5 0.7 0.01 0.3 0.5 0.7

0.94

0.87

0.97

0.92

1.0 0.98

0.54

0.98
0.95 0.96

0.7

0.9
0.92

0.99 1.0 0.98

Search Time Latency

Transferable Parameters Ratio

Figure 6: An illustration ofMoses’s performance with a wider
ratio of transferable parameters.

outperforms all other baselines for both 𝐾80 → 2060 and 𝐾80 →
𝑇𝑋2 settings. It can also be observed that, for some input DNN
models such as SqueezeNet and MobileNet, Ansor-Random and
Tenset-Pretrain could be more efficient than Moses. This is because
these baselines provide no online learning during the auto-tuning.
Therefore, the corresponding end-to-end model inference latency
of these models can be greatly lower than Moses. The evaluation
results show that the search efficiency gain of the 𝐾80 → 2060
setting can be up to 47.8% while up to 58.5% for the 𝐾80 → 𝑇𝑋2
settings. This is because the on-device data collection costs on TX2
are much higher than on RTX2060.

4.2.2 CMAT Score Comparisons. Table. 1 shows the superior com-
prehensive performance of Moses over both small (200) and large
(20000 for 2060, 5000 for TX2) numbers of trials across all input
DNN models. As mentioned above, although Tenset achieves 15%
auto-tuning efficiency gain on MobileNet based on the𝐾80 → 2060
setting, which is better than Moses (9.6%), the corresponding CMAT
is -14.75% over Tenset fine-tuning, which is much worse thanMoses
(up to 45.8%). We can observe that for some cases (e.g. 2060-S), the
CMAT gain under the small-trial setting can even be better than the
large-trial one, due to the characteristics of the heuristic searching
algorithm embedded in the auto-tuning component in TVM. The
base performance of Tenset-Finetune can be extremely low with
no prior knowledge during the transfer process of the cost model.

4.2.3 Ratio of Transferable Parameters. Here we provide the anal-
ysis of the ratio of transferable parameters. Fig. 6 shows the re-
sults of Moses on a wider setting of transferable parameters ratio:
{0.01, 0.3, 0.5, 0.7}. According to the end-to-end performance re-
sults, we can observe that the optimal performance can be around
0.5. Generally speaking, the 𝑠𝑡𝑑 value for settings of {0.3, 0.5, 0.7}
ratio is not large. The results illustrate that the optimal performance
produced by different ratios is not sensitive to the ratio setting when
it is ranging from 0.3 to 0.7.

5 DISCUSSION AND FUTUREWORK
Extension to More Hardware Platforms. With the emergence
of a huge number of new hardware platforms, cross-device DNN
compiling acceleration is becoming increasingly important [23, 24].
Our experiments employ only two edge platforms (GTX2060 and
Jetson TX2) and leave a possible extension of auto-tuning optimiza-
tions on mobile devices as our future works. Another natural idea
is to enable the compiling knowledge transfer among devices with

larger hardware difference gaps, for example, the transfer between
server-level GPUs to CPUs or FPGAs.
Auto-Tuning Search Space Pruning. To further accelerate the
auto-tuning process on the target device, another possible research
direction is to offer accurate search space pruning during compil-
ing, especially on mobile and edge devices, since there are more
hardware limitations such as the number of total ALUs (Arithmetic
logic units) and DRAM bandwidth that would become the potential
bottlenecks for fast auto-tuning on these devices, which naturally
restricts the search space [12]. To strategically shrink the search
space, we plan to explore Bayesian Non-parametric Space Partition
(BNSP) [7] to adaptively guide the subspace pruning during each
auto-tuning iteration. BNSP models provide a flexible and geomet-
rically interpretative way to describe the implicit and complex rela-
tionships among different covariates (features), with which we can
partition the N-dimensional feature data space (tensor programs)
into a set of blocks, thus exponentially decreasing the numbers of
search iterations.
Energy-aware DNN Compiling for Edge Devices. Edge AI ap-
plications demand both low power consumption and real-time
responses. Unfortunately, most high-performance DNN kernels
generated by DNN compilers are aimed to improve computational
efficiency while the memory efficiency, which affects the on-device
power consumption, has gained little attention [14]. Most of these
deep-learning compilers adopted loop-oriented scheduling prim-
itives and designed auto-tuning frameworks on top of them. It
is possible to insert more hardware-centric schedule spaces into
the compiling process to generate energy-aware kernels. As a sim-
ple example, it is possible to add 𝑃𝑒𝑎𝑘𝑃𝑜𝑤𝑒𝑟 (𝑇𝑒𝑛𝑠𝑜𝑟𝑃𝑟𝑜𝑔𝑟𝑎𝑚) or
𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑃𝑜𝑤𝑒𝑟 (𝑇𝑒𝑛𝑠𝑜𝑟𝑃𝑟𝑜𝑔𝑟𝑎𝑚) into the cost model. The key chal-
lenge falls in how we can accurately measure the energy value for
each tensor program record efficiently since the time duration for
each tuning record is usually at a millisecond level.
Meta Learning for Fast Adaptation. Another research direc-
tion is to investigate meta-learning-based approaches to accelerate
cross-device auto-tuning [23]. We will design a cost model with
meta-learned parameters which enables to leverage of previously
learned knowledge and experiences with similar programs, which
can enhance the fast cross-device compiling knowledge transfer
and thus reduce the high optimization overhead.

6 CONCLUSION
We present Moses, a new framework to optimize the auto-tuning
process in the DNN compiler, and thus enable fast compiling
knowledge transfer among mobile and edge devices. Our approach
achieves cross-device adaptation of a trained cost model by updat-
ing the domain invariant parameters during online learning, which
greatly improves the efficiency of the DNN compiling process and
the end-to-end throughput of tuned tensor programs on the target
device.

ACKNOWLEDGEMENT
The work described in this article was supported by the Research
Grants Council (RGC)-General Research Fund under Grant No.
14209619.

Moses: Exploiting Cross-device Transferable Features for On-device Tensor Program Optimization HotMobile ’23, February 22–23, 2023, Newport Beach, CA, USA

REFERENCES
[1] Martín Abadi et al. Tensorflow: A system for large-scale machine learning. CoRR,

abs/1605.08695, 2016.
[2] Byung Hoon Ahn, Prannoy Pilligundla, Amir Yazdanbakhsh, and Hadi Es-

maeilzadeh. Chameleon: Adaptive code optimization for expedited deep neural
network compilation. CoRR, abs/2001.08743, 2020.

[3] Riyadh Baghdadi, Massinissa Merouani, Mohamed-Hicham Leghettas, Kamel
Abdous, Taha Arbaoui, Karima Benatchba, and Saman P. Amarasinghe. A deep
learning based cost model for automatic code optimization. CoRR, abs/2104.04955,
2021.

[4] Riyadh Baghdadi, Massinissa Merouani, Mohamed-Hicham Leghettas, Kamel
Abdous, Taha Arbaoui, Karima Benatchba, and Saman P. Amarasinghe. A deep
learning based cost model for automatic code optimization. CoRR, abs/2104.04955,
2021.

[5] Tianqi Chen et al. Learning to optimize tensor programs. CoRR, abs/1805.08166,
2018.

[6] Tianqi Chen et al. TVM: An automated end-to-end optimizing compiler for
deep learning. In 13th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 18), October 2018.

[7] Xuhui Fan et al. Bayesian nonparametric space partitions: A survey. arXiv
preprint arXiv:2002.11394, 2020.

[8] Jonathan Frankle et al. The lottery ticket hypothesis: Finding sparse, trainable
neural networks. In International Conference on Learning Representations, 2019.

[9] Zhongyi Han, Haoliang Sun, and Yilong Yin. Learning transferable parameters
for unsupervised domain adaptation. arXiv preprint arXiv:2108.06129, 2021.

[10] Intel. Intel mkl-dnn. https://oneapi-src.github.io/oneDNN/v0/index.html, 2022.
[11] Zhihao Jia, Oded Padon, James Thomas, Todd Warszawski, Matei Zaharia, and

Alex Aiken. Taso: Optimizing deep learning computation with automatic gen-
eration of graph substitutions. In Proceedings of the 27th ACM Symposium on
Operating Systems Principles, SOSP ’19, page 47–62, New York, NY, USA, 2019.
Association for Computing Machinery.

[12] Wookeun Jung, Thanh Tuan Dao, and Jaejin Lee. Deepcuts: a deep learning
optimization framework for versatile gpu workloads. In Proceedings of the 42nd
ACM SIGPLAN International Conference on Programming Language Design and
Implementation, pages 190–205, 2021.

[13] Samuel J Kaufman, Phitchaya Mangpo Phothilimthana, Yanqi Zhou, Charith
Mendis, Sudip Roy, Amit Sabne, and Mike Burrows. A learned performance
model for tensor processing units. arXiv preprint arXiv:2008.01040, 2020.

[14] Skanda Koppula, Lois Orosa, A Giray Yağlıkçı, Roknoddin Azizi, Taha Shahroodi,
Konstantinos Kanellopoulos, and Onur Mutlu. Eden: Enabling energy-efficient,
high-performance deep neural network inference using approximate dram. In
Proceedings of the 52nd Annual IEEE/ACM International Symposium on Microar-
chitecture, pages 166–181, 2019.

[15] Menghao Li, Minjia Zhang, Chi Wang, and Mingqin Li. Adatune: Adaptive tensor
program compilation made efficient. In H. Larochelle, M. Ranzato, R. Hadsell, M. F.
Balcan, and H. Lin, editors, Advances in Neural Information Processing Systems,
volume 33, pages 14807–14819. Curran Associates, Inc., 2020.

[16] Mingzhen Li, Yi Liu, Xiaoyan Liu, Qingxiao Sun, Xin You, Hailong Yang, Zhongzhi
Luan, and Depei Qian. The deep learning compiler: A comprehensive survey.
CoRR, abs/2002.03794, 2020.

[17] Tzu-Mao Li et al. Differentiable programming for image processing and deep
learning in halide. ACM Trans. Graph., 37(4), July 2018.

[18] Neiwen Ling, Kai Wang, Yuze He, Guoliang Xing, and Daqi Xie. Rt-mdl: Support-
ing real-time mixed deep learning tasks on edge platforms. In Proceedings of the
19th ACM Conference on Embedded Networked Sensor Systems, pages 1–14, 2021.

[19] Yishay Mansour et al. Domain adaptation: Learning bounds and algorithms.
arXiv preprint arXiv:0902.3430, 2009.

[20] Charith Mendis, Cambridge Yang, Yewen Pu, Dr.Saman Amarasinghe, and
Michael Carbin. Compiler auto-vectorization with imitation learning. In H. Wal-
lach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors,
Advances in Neural Information Processing Systems, volume 32. Curran Associates,
Inc., 2019.

[21] Wei Niu, Jiexiong Guan, Yanzhi Wang, Gagan Agrawal, and Bin Ren. Dnnfusion:
Accelerating deep neural networks execution with advanced operator fusion. In
Proceedings of the 42nd ACM SIGPLAN International Conference on Programming
Language Design and Implementation, PLDI 2021, page 883–898, New York, NY,
USA, 2021. Association for Computing Machinery.

[22] NVIDIA. Nvidia cudnn. https://docs.nvidia.com/deeplearning/cudnn/api/index.
html, 2022.

[23] Jaehun Ryu and Hyojin Sung. Metatune: Meta-learning based cost model for fast
and efficient auto-tuning frameworks. CoRR, abs/2102.04199, 2021.

[24] Yi Zhai, Yu Zhang, Shuo Liu, Xiaomeng Chu, Jie Peng, Jianmin Ji, and Yanyong
Zhang. Tlp: A deep learning-based cost model for tensor program tuning. arXiv
preprint arXiv:2211.03578, 2022.

[25] Minjia Zhang, Menghao Li, Chi Wang, and Mingqin Li. Dynatune: Dynamic
tensor program optimization in deep neural network compilation. In International
Conference on Learning Representations, 2021.

[26] Zhihe Zhao, Zhehao Jiang, Neiwen Ling, Xian Shuai, and Guoliang Xing. Ecrt: An
edge computing system for real-time image-based object tracking. In Proceedings
of the 16th ACM Conference on Embedded Networked Sensor Systems, pages 394–
395. ACM, 2018.

[27] Zhihe Zhao, Kai Wang, Neiwen Ling, and Guoliang Xing. Edgeml: An automl
framework for real-time deep learning on the edge. In Proceedings of the Inter-
national Conference on Internet-of-Things Design and Implementation, IoTDI ’21,
page 133–144, New York, NY, USA, 2021. Association for Computing Machinery.

[28] Zheng et al. Flextensor: An automatic schedule exploration and optimization
framework for tensor computation on heterogeneous system. In Proceedings of the
Twenty-Fifth International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’20, page 859–873, New York, NY,
USA, 2020. Association for Computing Machinery.

[29] Lianmin Zheng et al. Ansor: Generating high-performance tensor programs
for deep learning. In 14th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 20), November 2020.

[30] Lianmin Zheng et al. Tenset: A large-scale program performance dataset for
learned tensor compilers. In Thirty-fifth Conference on Neural Information Pro-
cessing Systems Datasets and Benchmarks Track (Round 1), 2021.

https://oneapi-src.github.io/oneDNN/v0/index.html
https://docs.nvidia.com/deeplearning/cudnn/api/index.html
https://docs.nvidia.com/deeplearning/cudnn/api/index.html

	Abstract
	1 Introduction
	2 Related Work
	3 Moses
	3.1 Problem Formulation
	3.2 Design of Moses
	3.3 Lottery-Ticket-Based Cross-Device Adaptation
	3.4 Adaptive Tuning Data Partition
	3.5 Putting Everything Together

	4 Experiments
	4.1 Experimental Settings
	4.2 Results

	5 Discussion and Future Work
	6 Conclusion
	References

