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ABSTRACT

Run-time domain shifts from training-phase domains are
common in sensing systems designed with deep learning.
The shifts can be caused by sensor characteristic variations
and/or discrepancies between the design-phase model and
the actual model of the sensed physical process. To address
these issues, existing transfer learning techniques require
substantial target-domain data and thus incur high post-
deployment overhead. This paper proposes to exploit the
first principle governing the domain shift to reduce the de-
mand on target-domain data. Specifically, our proposed ap-
proach called PhyAug uses the first principle fitted with
few labeled or unlabeled source/target-domain data pairs to
transform the existing source-domain training data into aug-
mented data for updating the deep neural networks. In two
case studies of keyword spotting and DeepSpeech2-based
automatic speech recognition, with 5-second unlabeled data
collected from the target microphones, PhyAug recovers the
recognition accuracy losses due to microphone characteristic
variations by 37% to 72%. In a case study of seismic source
localization with TDoA fingerprints, by exploiting the first
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principle of signal propagation in uneven media, PhyAug
only requires 3% to 8% of labeled TDoA measurements re-
quired by the vanilla fingerprinting approach in achieving
the same localization accuracy.
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1 INTRODUCTION

Recent advances of deep learning have attracted great in-
terest of applying it in various embedded sensing systems.
The deep neural networks (DNNs), albeit capable of cap-
turing sophisticated patterns, require significant amounts
of labeled training data to realize the capability. A sensing
DNN trained on a design dataset is often observed run-time
performance degradations, due to domain shifts [12]. The
shifts are generally caused by the deviations of the sensor
characteristics and/or the monitored process dynamics of the
real deployments from those captured by the design dataset.
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Transfer learning [17] has received increasing attention
for addressing domain shifts. It is a cluster of approaches aim-
ing at storing knowledge learned from one task and applying
it to a different but related task. Under the transfer learning
scheme, ideally, with little new training data, we can trans-
fer a DNN trained from the source domain (i.e., the design
dataset) to the target domain (i.e., the sensing data from the
real deployment). However, the prevalent transfer learning
techniques, such as freeze-and-train [21] and domain adapta-
tion [17], require substantial training data collected in the tar-
get domain. The freeze-and-train approach retrains a number
of selected layers of a DNN with new target-domain samples
to implement the model transfer. Domain adaptation often
needs to train a new DNN to transform the target-domain
inference data back to the source domain. For instance, the
Mic2Mic [11] trains a cycle-consistent generative adversar-
ial network (CycleGAN) to perform the translation between
two microphones that have their own hardware characteris-
tics. However, the training of CycleGAN requires about 20
minutes of microphone recording from both domains for a
keyword spotting task [11]. In summary, although the preva-
lent transfer learning techniques reduce the demands on the
target-domain training data in comparison with learning
from scratch in the target domain, they still need substantial
target-domain data to implement the model transfer.

In the cyber-physical sensing applications, both the moni-
tored physical processes and the sensing apparatus are often
governed by certain first principles. In this paper, we in-
vestigate the approach to exploit such first principles as a
form of prior knowledge to reduce the demand on target-
domain data for model transfer, vis-a-vis the aforementioned
physics-regardless transfer learning techniques [11, 17, 21].
Recent studies attempt to incorporate prior knowledge in
the form of commonsense [28] or physical laws [23, 24] to in-
crease the learning efficiency. The presentation of the prior
knowledge to learning algorithms is the core problem of
physics-constrained machine learning. In [23], the law of free
fall is incorporated into the loss function of learning the
heights of a tossed pillow in a video. In [24], fluid dynamics
equations are incorporated into the loss function of training
DNNs for real-time fluid flow simulations. However, these
physics-constrained machine learning approaches [23, 24]
propose new DNN architectures and/or training algorithms;
they are not designed to exploit first principles in transfer-
ring existing DNNs to address the domain shift problems.

Nevertheless, the improved learning efficiency of the physics-

constrained machine learning encourages exploiting first
principles to address domain shifts more efficiently. To this
end, we propose a new approach called physics-directed data
augmentation (PhyAug). Specifically, we use a minimum
amount of data collected from the target domain to esti-
mate the parameters of the first principle governing the
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domain shift process and then use the parametric first prin-
ciple to generate augmented target-domain training data.
Finally, the augmented target-domain data samples are used
to transfer or retrain the source-domain DNN. PhyAug has
the following two key features. First, different from the con-
ventional data augmentations that apply unguided ad hoc
perturbations (e.g., noise injection) and transformations (e.g.,
scaling, rotation, etc) on existing training data to improve
the DNNs’ robustness against variations, PhyAug augments
the training data strategically by following first principles
to transfer DNNs. Second, PhyAug uses augmented data to
represent the domain shifts and thus requires no modifi-
cations to the legacy DNN architectures and training algo-
rithms. This makes PhyAug readily applicable once the data
augmentation is completed. In contrast, recently proposed
domain adaptation approaches based on adversarial learn-
ing [1, 11, 14, 25] update the DNNs under new adversarial
training architectures that need extensive hyperparameter
optimization and even application-specific redesigns. Such
needs largely weaken their readiness, especially when the
original DNNs are sophisticated such as the DeepSpeech?2
[15] for automatic speech recognition.

In this paper, we apply PhyAug to three case studies and
quantify the performance gains compared with other transfer
learning approaches. The data and code of the case studies
can be found in [10]. The first and the second case studies
aim at adapting DNNs for keyword spotting (KWS) and au-
tomatic speech recognition (ASR) respectively to individual
deployed microphones. The domain shifts are mainly from
the microphone’s hardware characteristics. Our tests show
that the microphone can lead to 15% to 35% absolute accuracy
drops, depending on the microphone quality. Instead of col-
lecting training data using the target microphone, PhyAug
uses a smartphone to play a 5-second white noise and then
estimates the frequency response curve of the microphone
based on its received noise data. Then, using the estimated
curve, the existing samples in the factory training dataset
are transformed into new training data samples, which are
used to transfer the DNN to the target domain of the mi-
crophone by a retraining process. Experiment results show
that PhyAug recovers the microphone-induced accuracy loss
by 53%-72% and 37%-70% in KWS and ASR, respectively.
PhyAug also outperforms the existing approaches including
FADA [14] that is a domain adaptation approach based on
adversarial learning and Mic2Mic [11] and CDA [12] that are
designed specifically to address microphone heterogeneity.
Note that KWS and ASR differ significantly in DNN model
depth and complexity.

The third case study is seismic event localization. In the
source domain where the density of the signal propagation
medium is spatially homogeneous, the problem of estimating
the event location based on the time differences of arrival
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(TDoAs) of seismic signals received by geographically dis-
tributed sensors can follow a multilateration formulation.
We aim to adapt to the target domain with an unknown
and uneven medium that distorts the TDoAs. Thus, differ-
ent from the sensor-induced domain shifts in the first and
second case studies, the domain shift in this case study is
from the variation of the sensed process. PhyAug estimates
the signal propagation slowness model of the medium using
a small amount of labeled TDoA data and then generates
extensive TDoA data with simulated events to train a DNN
for event localization. Results show that PhyAug only re-
quires 3% to 8% of the real labeled TDoA data required by the
physics-regardless vanilla approach in achieving the same
event localization accuracy.

The main contribution of this paper is the proposed ap-
proach of using the first principle fitted with a small amount
of source- and target-domain data to extensively augment
the target-domain data for model transfer. This approach is
more efficient than the physics-regardless transfer learning
in terms of target-domain data sampling complexity. The
applicability of PhyAug is contingent on the availability of
the parametric first principle. While the context of cyber-
physical systems provides abundant opportunities, the task
of pinpointing useful and parametric first principles can be
challenging in practice. Fortunately, this task is a one-time
effort. Once the first principle for a specific application is
identified, the model transfer processes of all the application
instances benefit. For instance, by applying PhyAug with a
microphone’s frequency response curve as the parametric
first principle, we can avoid the process of collecting sub-
stantial training data from each individual microphone for
adapting ASR models.

The remainder of this paper is organized as follows. §2
overviews the PhyAug approach and reviews related work.
§3, §4, and §5 present the three case studies. §6 discusses
several issues. §7 concludes this paper.

2 APPROACH OVERVIEW & RELATED
WORK

In this section, §2.1 overviews the PhyAug approach. §2.2
reviews the related studies and explains their relationships
with and differences from PhyAug. §2.3 discusses the re-
search methodology adopted in this paper.

2.1 Approach Overview

Fig. 1 illustrates PhyAug’s workflow using a simple exam-
ple, where the DNN performs a two-class classification task
based on two-dimensional (2D) data samples and the first
principle governing the domain shift is a nonlinear polyno-
mial transform. Such transform can be used to characterize
camera lens distortion [19]. To simplify the discussion, this
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Figure 1: PhyAug workflow.

example considers class-independent domain shift, i.e., the
transform is identical across all the classes. Note that PhyAug
can deal with class-dependent domain shifts, which will be
discussed later. As illustrated in the upper part of Fig. 1, the
general transfer learning approaches regardless of the first
principles need to draw substantial data samples from both
the source and target domains. Then, they apply domain shift
learning techniques to update the existing source-domain
DNN or construct a prefix DNN [11] to address the domain
shift. Extensive data collection in the target domain often
incurs undesirable overhead in practice.

Differently, as shown in the lower part of Fig. 1, PhyAug
applies the following four steps to avoid extensive data col-
lection in the target domain. @ The system designer iden-
tifies the parametric first principle governing the domain
shift. For the current example, the parametric first prin-
ciple is X’ = ayx + azy + asxy + azx* + asy? and y’ =
bix + byy + bsxy + byx? + bsy?, where (x,y) and (x’, y’) are
a pair of data samples in the source and target domains, re-
spectively, and a;, b; are unknown parameters. @ A small
amount of unlabeled data pairs are drawn from the source
and target domains. The drawn data pairs are used to esti-
mate the parameters of the first principle. For this example, if
the domain shift is perturbation-free, the minimum number
of data pairs needed is the number of unknown parameters of
the polynomial transform. If the domain shift is also affected
by other unmodeled perturbations, more data pairs can be
drawn to improve the accuracy of estimating the parameters
under a least squares formulation. If the domain shift is class-
dependent, the data pair sampling and parameter estimation
should be performed for each class separately. ® All the ex-
isting source-domain training data samples are transformed
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Table 1: Categorization, used techniques, and requirements of various solutions to address domain shifts.

Category | Used Solution Applications Requirements
technique in publication Source do- Target do- Paired First pr- Target-domain
main label mainlabel label data inciple data volume*
. FADA [14] computer vision v v v - 111
4% ;5 Adversarial ADDA [25] | computer vision - - - - T
2 2 | learning TransAct [1] | activity sensing - - - 1
- g Mic2Mic voice sensing - - - - 1
F 3 [11]
E g § Meta learning | MetaSense[6]| voice & motion v 4 - - 11
AR5 < [MData PhvAu. voice sensing - - - v 1
augmentation yaug event localization - 4 - v 11
Model ro- | Data . CDA [12] voice? and activity - - - v 1
bustness | augmentation sensing

* The bars represent oracle scales partially based on the reported numbers in respective publications. Fully comparable scales are diffi-
cult to obtain because the solutions are designed for different applications. PhyAug is compared with FADA, Mic2Mic, and CDA in the
evaluation sections of this paper. Reasons for excluding other approaches from the comparison will be discussed in the case studies.

to the target domain using the fitted first principle, forming
an augmented training dataset in the target domain. @ With
the augmented training dataset, various techniques can be
employed to transfer the existing DNN built in the source
domain to the target domain. For instance, we can retrain the
DNN with the augmented data. The retraining can use the
existing DNN as the starting point to speed up the process.
For instance, for the DeepSpeech2 [15] which is a large-scale
ASR model used in §4, the retraining only requires a half of
training time compared with the training from scratch using
the augmented data.

For sensing DNN design, the source domain is in general
the design dataset. In such case, the source domain cannot
be excited any more for data pair sampling in both domains
simultaneously. However, we can recreate the excitation to
collect the corresponding target-domain samples. For in-
stance, we can use a speaker to play voice samples in the
source-domain dataset and collect the corresponding sam-
ples from a target-domain microphone. Similarly, we can use
a computer monitor to display image samples in the source-
domain dataset and collect the corresponding samples from
a target-domain camera that may have optical distortions.

2.2 Related Work

The applications of deep learning in embedded sensing sys-
tems have obtained superior inference accuracy compared
with heuristics and conventional machine learning. Various
approaches have been proposed to address the domain shift
problems in embedded sensing [1, 6, 11, 12] and image recog-
nition [14, 25]. Table 1 summarizes the categorization, used
techniques, and requirements of these approaches. In what
follows, we discuss the important details of these approaches
and their differences from PhyAug.

B Domain adaptation: Few-shot Adversarial Domain
Adaptation (FADA) [14] transfers the model with limited
amount of target-domain training data. It uses the super-
vised adversarial learning technique to find a shared subspace
of the data distributions in the source and target domains.
FADA requires labeled and paired data samples from both
the source and target domains. Adversarial Discriminative
Domain Adaptation (ADDA) [25] uses unsupervised adversar-
ial learning to learn a feature encoder for the target domain.
Although ADDA requires neither class labels nor data pair-
ing, it demands substantial unlabeled target-domain data.
TransAct in [1] considers sensor heterogeneity in human
activity recognition and uses unsupervised adversarial learn-
ing to learn stochastic features for both domains. It requires
hundreds of unlabeled target-domain data samples. Mic2Mic
[11] applies CycleGAN, which is also an adversarial learning
technique, to map the target-domain audio recorded by a
microphone “in the wild” back to the source-domain micro-
phone for which the DNN is trained. Mic2Mic requires about
20 minutes of speech recording from both microphones,
which represents an overhead. Moreover, it can only per-
form one-to-one translations. Our experiment results in §3
and §4 show that CycleGAN performs unsatisfactorily when
the source domains are publicly available speech datasets
that are collected using numerous microphones in diverse
environments.

PhyAug is a domain adaptation approach. Compared with
ADDA [25], TransAct [1], and Mic2Mic [11] that are based on
unsupervised adversarial learning and thus require substan-
tial target-domain training data, PhyAug exploits the first
principle governing the domain shift to reduce the demand
on target-domain data. Although FADA [14] aims at reducing
the demand of target-domain data, it requires extensive other
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Figure 2: Different purposes of data augmentation il-
lustrated using voice sensing. Note that the source do-
main may contain many microphones used to collect
training samples.

information such as class labels in both domains. In contrast,
PhyAug can operate with unlabeled data (cf. §3 and §4). Dif-
ferent from Mic2Mic [11] that requires the source domain
to be a single microphone, PhyAug admits a source-domain
dataset collected via many (and even unknown) microphones
in the KWS and ASR case studies. This makes PhyAug prac-
tical since the datasets used to drive the design of DNNs
for real-world applications often consist of recordings from
diverse sources.

MetaSense [6] uses data collected from multiple source do-
mains to train a base model that can adapt to a target domain
related to the source domains. However, it requires substan-
tial training data from both domains and class labels from
each source domain. For voice sensing, MetaSense cannot
use a source-domain dataset collected via many unlabeled
microphones. But PhyAug can.

m Model robustness via data augmentation: Data aug-
mentation has been widely adopted for enhancing model
robustness. As illustrated in Fig. 2a, a conventional scheme
presumes a number of domain shifts (e.g., scaling, rotation,
noise injection, etc) and follows them to generate augmented
training samples. Then, the original and the augmented data
samples are used to train a single DNN. During the serving
phase, this DNN remains robust to the domain shift resem-
bling the presumption. However, should the actual domain
shift be out of the presumption, the robustness is lost. The
CDA approach proposed in [12] follows the conventional
data augmentation scheme to mitigate the impact of sensor
heterogeneity on DNN’s accuracy. Specifically, it estimates
the probability distribution of sensors’ heterogeneity char-
acteristics from a heterogeneity dataset and then uses the
characteristics sampled from the estimated distribution to
generate augmented training data. As the dataset needs to
cover heterogeneity characteristics, its collection in practice
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incurs a considerable overhead. Specifically, the heterogene-
ity dataset used in [12] consists of 2-hour recordings of 20 dif-
ferent microphones placed equidistant from an audio speaker.
If the characteristic of a microphone “in the wild” is out of
the estimated characteristic distribution (i.e., a missed catch),
the enhanced DNN may not perform well. Since CDA uses
sensor characteristics, we view it as an approach directed by
first principles.

Different from CDA’s objective of enhancing model robust-
ness, PhyAug uses data augmentation to transfer a model to
a specific target domain. Fig. 2b illustrates this in the context
of voice sensing, where microphones’ unique characteris-
tics create domains. PhyAug constructs a dedicated DNN for
each target domain. Thus, PhyAug is free of the missed catch
problem faced by CDA.

2.3 Methodology

As this paper proposes PhyAug which is a domain adapta-
tion approach, it is desirable to show PhyAug’s applicability
to multiple applications and its scalability to address dif-
ferent levels of pattern sophistication. Therefore, we apply
PhyAug to three applications, i.e., KWS, ASR, and seismic
event localization. Although KWS and ASR are two specific
human voice sensing tasks, they have significantly different
complexities. Different from KWS and ASR whose domain
shift is mainly caused by sensor heterogeneity, the seismic
event localization concerns about the domain shift caused
by variations of the monitored physical process. For each
case study, we also compare PhyAug with multiple existing
approaches to show the advantages and performance gains
of PhyAug.

3 CASE STUDY 1: KEYWORD SPOTTING

Human voice sensing is important for human-computer in-
teractions in many Internet of Things (IoT) applications. At
present, the DNN for a specific human voice sensing task
is often trained based on a standard dataset. However, as
IoT microphones are often of small form factors and low
cost, their recordings often suffer degraded and varied voice
qualities. In addition, the environment that an IoT micro-
phone resides in can also affect its recording. For instance,
the echo patterns in indoor spaces of different sizes can be
distinct. Such run-time variations may be poorly captured
by the standard dataset. As a result, the DNN yields reduced
accuracy after the deployment. We apply PhyAug to address
this domain shift problem. Specifically, we start from a swift
process of profiling the IoT microphone’s frequency response
curve (FRC) with the help of a smartphone. Then, we use the
FRC to transform the standard dataset. Finally, we retrain the
DNN using the transformed dataset to obtain a personalized
DNN for the IoT microphone.
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In this paper, we consider two human voice sensing func-
tions: KWS and ASR. Most intelligent virtual assistant sys-
tems implement both functions. For instance, a virtual assis-
tant often uses a low-power co-processor to perform KWS at
all times. Once a designated keyword (e.g., “Hey Siri”) is de-
tected, the virtual assistant will activate the main processor
to execute the more sophisticated ASR. In this section, we
focus on KWS. §4 will focus on ASR. The results show that,
with a 5-second smartphone-assisted FRC profiling process,
we can recover a significant portion of accuracy loss caused
by the domain shifts.

In the case studies of KWS (§3) and ASR (§4), source do-
main is the standard dataset originally used by the DNN;
target domain is the dataset of voice samples captured by
a specific deployed microphone; first principle is the mi-
crophone’s FRC induced by the microphone hardware and
its ambient environment.

3.1 Problem Description

We conduct a set of preliminary experiments to investigate
the impact of diverse microphones on the KWS accuracy.
Based on the results, we state the problem that we aim to
address.

3.1.1 Standard dataset and DNN. We use Google Speech
Commands Dataset [26] as the standard dataset in this case
study. It contains 65,000 one-second utterances of 30 key-
words collected from thousands of people. Audio files are
sampled at 16 kilo samples per second (ksps). We pre-process
the voice samples as follows. First, we apply a low-pass fil-
ter (LPF) with a cutoff frequency of 4kHz on each voice
sample, because human voice’s frequency band ranges from
approximately 0.3kHz to 3.4kHz. Then, for each filtered
voice sample, we generate 40-dimensional Mel-Frequency
Cepstral Coefficients (MFCC) frames using 30-millisecond
window size and 10-millisecond window shift. The z-score
normalization is applied on each MFCC frame. Eventually,
each voice sample is converted to a 101 X 40 MFCC tensor.
The dataset is randomly split into training, validation, and
testing sets following an 8:1:1 ratio.
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We implement a CNN to recognize 10 keywords, i.e., “yes”,
no”, “left”, “right”, “up”, “down”, “stop”, “go”, “on”, and “off”.
We also add two more classes to represent silence and un-
known keyword. Fig. 3 shows the structure of the CNN. It
achieves 90% test accuracy, which is similar to that in [29]

and referred to as the oracle test accuracy.

«

3.1.2  Impact of microphone on KWS performance. In this sec-
tion, we demonstrate that the CNN has performance degra-
dation as a result of microphone heterogeneity. We test the
CNN on samples captured by five different microphones
named M1, M2, M3, M4, and M5 as shown in Fig. 4 that have
list prices from high ($80) to low ($3.5). M1 and M2 are two
high-end desktop cardioid condenser microphones, support-
ing sampling rates of 192 ksps at 24-bit depth and 48 ksps at
16-bit depth, effective frequency responses of [30 Hz, 16 kHz]
and [30 Hz, 15 kHz], respectively. M3 is a portable clip-on
microphone with an effective frequency response range of
[20Hz, 16 kHz]. M4 and M5 are two low-cost mini micro-
phones without detailed specifications. Fig. 4 shows the
placement of the microphones. For fair comparison and re-
sult reproducibility, we use an Apple iPhone 7 to play the
original samples of the test dataset through its loudspeaker,
with all microphones placed at equal distances away.

The samples recorded by each microphone are fed into
the KWS CNN for inference. Fig. 5 shows the test accuracy
for each microphone. Compared with the oracle test accu-
racy of 90%, there are 14% to 19% absolute accuracy drops
due to domain shifts. By inspecting the spectrograms of the
original test sample and the corresponding ones captured
by the microphones, we can observe the differences. This
explains the distinct accuracy drops among microphones.
From the above experiment results, the research questions
addressed in this case study are as follows. First, how to pro-
file the characteristics of individual microphones with low
overhead? Second, how to exploit the profile of a particular
microphone to recover KWS’s accuracy?
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3.2 PhyAug for Keyword Spotting

PhyAug for KWS consists of two procedures: fast microphone
profiling and model transfer via data augmentation.

3.2.1  Fast microphone profiling. A microphone can be char-
acterized by its frequency response consisting of magnitude
and phase. We only consider the magnitude component, be-
cause the information of a voice signal is largely represented
by the energy distribution over frequencies, with little/no
impact from the phase of the voice signal in the time domain.
Let X(f) and Y(f) denote the frequency-domain representa-
tions of the considered microphone’s input and output. The
FRC to characterize the microphone is H(f) = |‘ ;(({‘;ll’
| - | represents the magnitude.

We propose a fast microphone profiling approach that
estimates H(f) in a short time. It can be performed through
a factory calibration process or by the user after the micro-
phone is deployed. Specifically, a loudspeaker placed close to
the target microphone emits a band-limited acoustic white
noise n(t) for a certain time duration. The frequency band
of the white noise generator is set to be the band that we
desire to profile. Meanwhile, the target microphone records
the received acoustic signal y,(¢). Thus, the FRC is estimated

asH(f) = \‘(f;[y;((ttﬁ]ll , where F[-] represents the Fourier trans-
form. As the white noise n(t) has a nearly constant power
spectral density (PSD), this approach profiles the micro-
phone’s response at all frequencies in the given band.

In our experiments, we use the iPhone 7 shown in Fig. 4
to emit the white noise. We set the frequency band of the
noise generator to be [0, 8 kHz], which is the Nyquist fre-
quency of the microphone. Fig. 6 shows the measured FRCs
of the five microphones used in our experiments. Each FRC
is normalized to [0, 1]. We can see that the microphones
exhibit distinct FRCs. In addition, we observe that the two
low-end microphones M4 and M5 have lower sensitivities
to the higher frequency band, i.e., 5 kHz to 8 kHz, compared
with the microphones M1, M2, and M3.

where

3.2.2  Model transfer via data augmentation. We augment
training samples in the target microphone’s domain by trans-
forming the original training samples using FRC. The proce-
dure for transforming a sample x(t) is as follows: (1) Apply
the pre-processing LPF on x(t) to produce x’(¢); (2) Conduct
short-time Fourier transform using 30-millisecond sliding
windows with an offset of 10 milliseconds on x’(¢) to produce
101 Fourier frames, i.e., X;(f), i = 1,2,...100; (3) Multiply
the magnitude of each Fourier frame with the FRC to pro-
duce |Y;(f)| = H(f) - |Xi(f)|; (4) Generate the MFCC frame
from each PSD |Y;(f)|?; (5) Concatenate all 101 MFCC frames
to form the MFCC tensor. Lastly, PhyAug retrains the CNN
with augmented data samples for the microphone. Note that
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we use the pre-trained CNN as the starting point of the re-
training process.

3.3 Performance Evaluation

3.3.1 Alternative approaches. Our performance evaluation
employs the following alternative approaches.

m Data calibration: At run time, it uses the measured FRC
to convert the target-domain data back to the source-domain
data and then applies the pre-trained CNN on the converted
data. Specifically, let Y;(f) denote the ith Fourier frame af-
ter the microphone applies the LPF and short-time Fourier
transform on the captured raw data. Then, it estimates the

2
corresponding source-domain PSD as |X;(f)|* = (lz’—g;‘)

and generates the MFCC frame from [X;(f)|?>. The MFCC
tensor concatenated from the MFCC frames over time is fed
to the pre-trained CNN.

m Conventional data augmentation (CDA) [12]: This
alternative captures the essence of the approach in [12]
following the conventional data augmentation scheme il-
lustrated in Fig. 2a. Specifically, one out of the five micro-
phones, e.g., M1, is designated as the testing microphone.
The remaining four, e.g., M2 to M5, are used to generate a
heterogeneity dataset [12]. The heterogeneity generator [12]
is constructed as follows. For each microphone in the het-
erogeneity dataset, FRC is measured multiple times with the
fast profiling process. At any frequency f, the FRC value
is modeled by a Gaussian distribution. A Gaussian mixture
is formed by the four heterogeneity-dataset microphones’
Gaussian distributions with equal weights. The Gaussian
mixtures for all frequencies form the heterogeneity generator.
Then, each source-domain training sample is transformed
by an FRC sampled from the heterogeneity generator into
an augmented sample. Lastly, the DNN is retrained with the
augmented training samples and tested with the samples
captured by the testing microphone.

m CycleGAN (essence of [11]): Mic2Mic [11] trains a
CycleGAN using unlabeled and unpaired data samples col-
lected from two microphones A and B. Then, CycleGAN can
translate a sample captured by A to the domain of B, or vice
versa. Following [11], we train a CycleGAN to translate the
samples captured by a target microphone to the source do-
main of Google Speech Commands Dataset. Same as [11],
the training of a CycleGAN for a target microphone uses 15
minutes data collected by the microphone. We train five Cy-
cleGAN:Ss for the five microphones, respectively. To measure
the test accuracy, a test sample collected by a microphone
is converted by the corresponding CycleGAN back to the
source domain and then fed into the pre-trained CNN.

Compared with PhyAug that requires a single 5-second
profiling data collection process for each microphone, CDA
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Figure 7: KWS test accuracy using various approaches
on tested microphones. Compared with the unmodi-
fied baseline, PhyAug recovers the accuracy losses by
64%, 67%, 72%, 53%, and 56% respectively for the five
microphones toward the oracle test accuracy.

repeats the profiling process many times for each heterogene-
ity microphone to construct the heterogeneity generator;
the training of CycleGAN requires 15 minutes of data col-
lected from each target microphone. Thus, both alternative
approaches have higher overhead.

m FADA [14]: It trains a feature encoder and classifier in
the source domain. Then, it combines source-domain and
target-domain data to train a domain-class discriminator.
Finally, the weights of the feature encoder and classifier are
updated to the target domain through adversarial learning
using the domain-class discriminator. To apply FADA for
KWS, we follow the architecture in [14] and modify the KWS
model in Fig. 3 by adding a fully-connected layer before the
last dense layer. Thus, the model has a feature encoder (CNN
layers) and a classifier (fully-connected layers).

We exclude the MetaSense, ADDA and TransAct reviewed
in §2.2 from the baselines for the following reasons. MetaSense
cannot be applied to a source-domain dataset collected via
many unlabeled microphones. We obtain unsatisfactory re-
sults for ADDA in the adversarial training with hours’ target-
domain training data and extensive hyperparameter tuning.
We suspect that the amount of target-domain training data is
still insufficient for ADDA. Note that PhyAug only requires
five seconds’ unlabeled target-domain data as shown shortly.
TransAct is customized for activity recognition that differs
from human voice sensing.

3.3.2  Evaluation results. We apply PhyAug and the alterna-
tives for the five microphones in Fig. 4. The test accuracies
are shown in Fig. 7. The bars labeled “unmodified” are the re-
sults from Fig. 5, for which no domain adaptation technique
is applied. We include them as the baseline. The results are
explained in detail as follows.

m Data calibration: It brings test accuracy improvements
for M1, M2, and M3. The average test accuracy gain is about
4%. For the cheap microphones M4 and M5, it results in
test accuracy deteriorations. The reason is as follows. Its
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back mapping uses the reciprocal of the measured FRC (i.e.,
1/H(f)), which contains large elements due to the near-zero
elements of H(f). The larger noises produced by the low-
end microphones M4 and M5 are further amplified by the
large elements of 1/H(f), resulting in performance deteriora-
tions. Thus, although this approach may bring performance
improvements, it is susceptible to noises.

m PhyAug: The black bars in Fig. 7 show PhyAug’s results.
Compared with the unmodified baseline, PhyAug recovers
the test accuracy losses by 64%, 67%, 72%, 53%, and 56% for
the five microphones. PhyAug cannot fully recover the test
accuracy losses. This is because PhyAug only addresses the
deterministic distortions due to microphones; it does not ad-
dress the other stochastic factors such as the environmental
noises and the microphones’ thermal noises.

m CDA: It recovers certain test accuracy losses for all mi-
crophones. This is because for any target microphone, there
is at least one heterogeneity dataset microphone giving a sim-
ilar FRC as the target microphone. Specifically, from Fig. 6,
M1, M2, and M3 exhibit similar FRCs; M4 and M5 exhibit
similar FRCs (i.e., they have good responses in lower fre-
quencies). However, PhyAug consistently outperforms CDA.
In addition, CDA introduces larger overhead than PhyAug
as discussed in §3.3.1.

B CycleGAN: It leads to test accuracy deteriorations for
all five target microphones. Although CycleGAN is effec-
tive in translating the domain of a microphone to that of
another microphone, which is the basis of Mic2Mic [11], it is
ineffective in translating a certain microphone to the source
domain of a dataset that consists of recordings captured
by many microphones. We illustrate this using an example.
First, we train a CycleGAN to translate M5 to M1. The first
and the third columns of Fig. 8a shows the spectrograms
captured by M1 and M5 for the same sample played by the
smartphone in the setup shown in Fig. 4. We can see that
there are discernible differences. The mid column shows the
output of the CycleGAN, which is very similar to the first
column. This result suggests that CycleGAN is effective for
device-to-device domain translation and provides a minimal
validation of Mic2Mic [11]. Then, we apply the same ap-
proach to train a different CycleGAN to translate M5 to the
domain of Google Speech Commands Dataset. Fig. 8b shows
the results. The third column is the spectrogram captured
by M5 when a dataset sample shown in the first column is
played by the smartphone in the setup shown in Fig. 4. The
mid column is the CycleGAN’s translation result, which has
discernible differences from the first column, suggesting the
ineffectiveness of CycleGAN. An intuitive explanation is that
the CycleGAN shown with samples captured by many mi-
crophones during the training phase is confused and caters
into no single microphone. Due to the discrepancy between
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Figure 8: CycleGAN translation results (mid column).
(a) Translation from M5 to M1. High similarity be-
tween first and second columns shows effectiveness of
CycleGAN. (b) Translation from M5 to the domain of
Google Speech Commands Dataset. Dissimilarity be-
tween first and second columns shows ineffectiveness
of CycleGAN.

CycleGAN’s output and the dataset, the pre-trained CNN
fed with CycleGAN’s outputs yields low test accuracy.

m FADA: When we set the number of labeled target-
domain samples per class (LTS/C) to 10 for FADA training,
it recovers the accuracy loss for the five microphones by
56%, 38%, 47%, 47%, and 37%, respectively, as shown in Fig. 7.
The performance of FADA increases with LTS/C. When we
increase LTS/C to 20, PhyAug still outperforms FADA. Note
that PhyAug requires a single unlabeled target-domain sam-
ple only. In addition, from our experience, FADA is sensitive
to hyperparameter setting.

m Required noise emission time for microphone pro-
filing: In the previous experiments, the microphone profiling
uses a 5-minute noise emission time. We conduct experi-
ments to investigate the impact of shorter noise emission
durations on the performance of PhyAug. The results show
that the FRCs of a certain microphone measured with vari-
ous noise emission durations down to five seconds are very
similar. The corresponding test accuracies of PhyAug are
also similar. (The detailed results are omitted here due to
space constraint.) Thus, a noise emission time of five seconds
is sufficient. This shows that PhyAug incurs little overhead.
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3.4 Application Considerations

From the above results, PhyAug is desirable for KWS on
virtual assistant systems. We envisage that more home IoT
devices (e.g., smart lights, smart kitchen appliances, etc.) will
support KWS. To apply PhyAug, the appliance manufacturer
can offer the fast microphone profiling function as a mo-
bile app and the model transfer function as a cloud service.
Thus, the end user can use the mobile app to obtain the FRC,
transmit it to the cloud service, and receive the customized
KWS DNN. As the KWS DNN is not very deep and PhyAug
is a one-time effort for each device, the model retraining
performed in the cloud is an acceptable overhead to trade
for better KWS accuracy over the entire device lifetime.

4 CASE STUDY 2: SPEECH RECOGNITION

ASR models often have performance degradation after de-
ployments. This section shows the impact of various micro-
phone models on ASR and how PhyAug is applied to recover
the accuracy loss.

4.1 Impact of Microphone on ASR

We use LibriSpeech [18] as the standard dataset in this case
study. It contains approximately 1,000 hours of English speech
corpus sampled at 16 ksps. Each sample is an utterance for
four to five seconds. We use an implementation [15] of Baidu
DeepSpeech2, which is a DNN-based end-to-end ASR sys-
tem exceeding the accuracy of Amazon Mechanical Turk hu-
man workers on several benchmarks. The used DeepSpeech2
model is pre-trained with LibriSpeech training dataset and
achieves 8.25% word error rate (WER) on LibriSpeech test
dataset. This 8.25% WER is referred to as oracle WER. Note
that the input to DeepSpeech? is the spectrogram of a Lib-
riSpeech sample, which is constructed from the Fourier frames
using 20-millisecond window size and 10-millisecond win-
dow shift.

DeepSpeech?2 has 11 hidden layers with 86.6 million weights.
It is far more complicated than the KWS CNN. Specifically,
DeepSpeech2 is 175 times larger than the KWS CNN in terms
of the weight amount. All the existing studies (e.g., Mic2ZMic
[11], MetaSense [6], and CDA [12]) that aimed at address-
ing domain shift problems in voice sensing only focused on
simple tasks like KWS and did not attempt a sophisticated
model such as DeepSpeech2.

We test the performance of the pre-trained DeepSpeech2
on the five microphones M1 to M5 used in §3. We follow
the same test methodology as presented in §3.1.2. In Fig. 9,
the histograms labeled “unmodified” represent the WERs of
the pre-trained DeepSpeech2 on the test samples recorded
by the five microphones. The horizontal line in the figure
represents the oracle WER. We can see that the microphones
introduce about 15% to 35% WER increases. In particular,
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Figure 9: WERSs using various approaches on tested mi-
crophones. Compared with the unmodified baseline,
PhyAug reduces WER by 60%, 41%, 37%, 70%, and 42%
respectively for the five microphones toward the ora-
cle WER. As CycleGAN gives very high WERs (about
90%), it is not shown here.

the two low-end microphones M4 and M5 incur the highest
WER increases. This result is consistent with the intuition.
From the above test results, this section investigates whether
PhyAug described in §3 for KWS is also effective for ASR.
Different from the KWS CNN that takes MFCC tensors as
the input, DeepSpeech? takes the spectrograms as the input.
Thus, in this case study, PhyAug does not need to convert
spectrograms to MFCC tensors in the data augmentation.

4.2 Performance Evaluation

4.2.1 Comparison with alternative approaches. We use data
calibration, CDA [12], and CycleGAN (i.e., essence of [11])
described in §3.3.1 as the baselines. FADA [14] cannot be
readily applied to DeepSpeech2, because FADA requires class
labels while DeepSpeech2 performs audio-to-text conversion
without the concept of class labels. Differently, PhyAug and
the three used baselines transform data without needing
class labels.

m Data calibration: Its results are shown by the his-
tograms labeled “calibration” in Fig. 9. Compared with the
unmodified baseline, this approach reduces some WERs.

®m PhyAug: Among all tested approaches, PhyAug achieves
the lowest WERs for all microphones. Compared with the
unmodified baseline, PhyAug reduces WER by 60%, 41%, 37%,
70%, and 42%, respectively, for the five microphones toward
the oracle WER.

m CDA [12]: It performs better than the data calibration
approach but worse than PhyAug. As PhyAug is directed by
the target microphone’s actual characteristics, it outperforms
CDA that is based on the predicted characteristics that may
be inaccurate.

m CycleGAN: We record a 3.5-hour speech dataset and
use it to train a CycleGAN to translate samples captured by
a target microphone to the source domain of LibriSpeech
dataset. Unfortunately, DeepSpeech2’s WERs on the data
translated by CycleGAN from the microphones’ samples are
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higher than 90%, indicating CycleGAN’s inefficacy. We are
unable to make it effective after extensive attempts. We also
try to train the CycleGAN to perform M5-to-M1 domain
translation following the design of Mic2Mic in [11]. The re-
sulting WER is 65%. Although this result is better than 90%,
it is still unsatisfactory. The reason for CycleGAN’s ineffi-
cacy for ASR is as follows. Unlike the KWS task studied in
Mic2Mic [11] and §3 of this paper, which discriminates a few
target classes only, end-to-end ASR is much more compli-
cated. CycleGAN may require much more training samples
beyond we use to achieve good performance, rendering it
too demanding and unattractive in practice.

4.2.2  Impact of various factors on PhyAug. We evaluate the
impact of the following three factors on PhyAug: the indoor
location of the microphone, the distance between the mi-
crophone and the sound source, and the environment type.
We adopt an evaluation methodology as follows. When we
evaluate the impact of a factor, the remaining two factors are
fixed. For a certain factor, let X and Y denote two different
settings of the factor. We use PhyAug(X,Y) to denote the
experiment in which the microphone profiling is performed
under the setting X and then the transferred model is tested
under the setting Y. Thus, PhyAug(X,X) evaluates in situ
performance; PhyAug(X,Y) evaluates the sensitivity to the
factor.

m Impact of microphone location: Microphones at dif-
ferent locations of an indoor space may be subject to different
acoustic reverberation effects. We set up experiments at three
spots, namely, A, B,and C,ina 7 X 4 m? meeting room. Spot
B is located at the room center; Spots A and C are located
at two sides of B, about 1 m apart from B along the room’s
long dimension. The phone and five microphones are set
up in the same way as Fig. 4. Fig. 10 shows the results of
the unmodified baseline approach tested at three spots, as
well as PhyAug’s in situ performance and location sensitiv-
ity. PhyAug’s in situ WERs (i.e., PhyAug(A,A), PhyAug(B,B),
PhyAug(C,C)) are consistently lower than those of the un-
modified baseline. The WERs of PhyAug(A,B) and PhyAug(A,C)
are slightly higher than PhyAug(B,B) and PhyAug(C,C), re-
spectively. This shows that location affects the performance
of a certain ASR model transferred by PhyAug, but not much.
Thus, PhyAug for DeepSpeech2 is insensitive to the locations
in a certain space.

m Impact of microphone-speaker distance: The dis-
tance affects the signal-to-noise ratio (SNR) received by the
microphone and thus ASR performance. With the setup at
the aforementioned Spot C, we vary the distance between
the microphones and the iPhone 7 used to play test samples
to be 75cm, 45 cm, and 15 cm (referred to as D;, D,, and
Ds). Fig. 11 shows the results. The unmodified baseline’s
WERs become lower when the microphone-speaker distance
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Figure 11: PhyAug’s in situ performance and
microphone-speaker distance sensitivity evaluated
with three distances.

is shorter, due to the increased SNR. PhyAug’s in situ WERs
(i.e., PhyAug(D;,D;), PhyAug(D,,D,), and PhyAug(Ds,Ds3))
are consistently lower than those of the unmodified baseline.
The performance gain is better exhibited when the distances
are longer. This suggests that in situ PhyAug improves the re-
silience of DeepSpeech2 against weak signals. In most cases,
the WERs of PhyAug(D;,D;) and PhyAug(D;,Ds) are slightly
higher than those of PhyAug(D5,D;) and PhyAug(Ds,Ds), re-
spectively. This shows that the microphone-speaker distance
affects the performance of a certain model transferred by
PhyAug, but not much. Thus, PhyAug for DeepSpeech? is
insensitive to the microphone-speaker distance.

Another related factor is the speaker’s azimuth with re-
spect to the microphone that can affect the quality of the
recorded signal due to the microphone’s polar-pattern char-
acteristic. For a certain microphone, the different azimuths of
the speaker create multiple target domains. If the speaker’s
azimuth can be sensed (e.g., by a microphone array), PhyAug
can be applied. However, as the five microphones used in this
paper lacks speaker azimuth sensing capability, we skip the
application of PhyAug to address the domain shifts caused
by the speaker’s azimuth.

m Impact of environment: Different types of environ-
ments in general have distinct acoustic reverberation pro-
files, which may affect the microphone’s signal reception.
We deploy our experiment setup in three distinct types of en-
vironments: a small tutorial room (T), a large lecture theatre
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Figure 12: PhyAug’s in situ performance and environ-
ment sensitivity evaluated in three types of environ-
ment, namely, small tutorial room (T), large lecture
theater (L), and outdoor open area (O).

(L), and an outdoor open area (O). Fig. 12 shows the results.
The unmodified baseline approach has similar results in T
and L. Its WERs become higher in O, because O has a higher
level of background noise. PhyAug’s in situ WERs in T, i.e.,
PhyAug(T,T), are consistently lower than those of the unmod-
ified baseline. PhyAug(L,L) and PhyAug(0,0) reduce WERs
compared with the unmodified baseline, except for the low-
quality microphone M5. As M5 has higher noise levels, the
microphone profiling process may not generate fidelity FRCs
for M5, leading to increased WERs. As shown in Figs. 12b and
12¢, the WERs of PhyAug(T,L) and PhyAug(T,0) are higher
than those of the unmodified baseline. The above results
show that PhyAug for DeepSpeech2 may have degraded per-
formance on low-quality microphones. In addition, PhyAug
for DeepSpeechz2 is sensitive to various environments.

4.3 Application Considerations

Use scenarios: The results in §4.2 show that PhyAug is
sensitive to the type of environment because the microphone
profiling additionally captures the acoustic reverberation
profile of the environment. Thus, PhyAug suits ASR systems
deployed at fixed locations, such as residential and in-car
voice assistance systems, as well as minutes transcription
systems installed in meeting rooms. PhyAug can also be
applied to the ad hoc deployment of ASR and automatic
language translation for a multilingual environment.

PhyAug and continuous learning (CL): An ASR sys-
tem can be improved via CL that gradually adapts the ASR
model to the speaker and/or the environment when exposed
to a continuous data stream for a long period of time. PhyAug
is complementary to CL since PhyAug is applied once. Jointly
applying PhyAug and CL can maximize the ASR system’s
quality of service.

5 CASE STUDY 3: SEISMIC SOURCE
LOCALIZATION

Estimating the location of a seismic event source using dis-
tributed sensors finds applications in earthquake detection
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[5], volcano monitoring [27], footstep localization [13], and
fall detection [4]. TDoA-based localization approaches have
been widely employed in these applications. The TDoA mea-
surement of a sensor is the difference between the time in-
stants at which the signal from the same event arrives at
the sensor and a reference sensor. In the source domain
where the medium density is spatially homogeneous, the
seismic signal propagation velocity is also spatially homo-
geneous. To address measurement noises, the TDoA-based
multilateration problem is often solved under a least squares
formulation. However, in practice, the medium density is
often spatially heterogeneous. This case study aims to deal
with the target domain where the medium density is un-
known and uneven. For instance, the density of the magma
beneath an active volcano varies with depth. As such, seis-
mologists need a slowness model that depicts the seismic
wave propagation speeds at different depths before hypocen-
ter estimation can be performed [9]. In footstep localization
and fall detection, the heterogeneity of the floor materials
affects the seismic wave propagation speed and degrades
the performance of the simplistic multilateration formula-
tion. Unfortunately, directly measuring the slowness model
is tedious or even unfeasible in many cases.

To cope with heterogeneous media, the fingerprinting ap-
proach can be employed. Specifically, when a seismic event
with a known location is triggered, the TDoA measurements
by the sensors form a fingerprint of the known location. With
the fingerprints of many locations, a seismic event with an
unknown location can be localized by comparing the sensors’
TDoA measurements with the fingerprints. The fingerprints
can be collected by triggering controlled events at different
locations, e.g., controlled explosions in seismology [8] and
hammer excitations in structure health monitoring [7]. Under
the fingerprinting approach, determining the location of an
event source can be formulated as a classification problem, in
which the fingerprint is the input data and the corresponding
location is the class label. To achieve a high localization accu-
racy, a laborious blanket process of fingerprinting many/all
locations is generally required. In this case study, we show
that by exploiting the first principle of seismic wave prop-
agation in an uneven medium, we can significantly reduce
the amount of fingerprints and achieves a certain level of
localization accuracy. Note that, from Appendix A, even with
homogeneous medium, the fingerprinting approach outper-
forms the least squares approach in terms of response time,
while offering comparable localization accuracy.

In this case study, source domain is the homogeneous
medium for seismic signals; target domain is the hetero-
geneous medium for seismic signals; first principle is the
slowness model characterizing seismic signal propagations
in heterogeneous media.

Wenjie Luo, Zhenyu Yan, Qun Song, and Rui Tan

5.1 Problem Description

Consider a 2D field divided into W} X W, grids, where W;
and W; are integers. Thus, the field has a total of N = W; -
W, grids. Each grid is associated with a slowness value in
seconds per kilometer (s/km), which is the reciprocal of the
seismic wave propagation speed in the grid. We assume
that the slowness at any position in a grid is a constant,
while the slownesses in different grids can be distinct. Thus,
the slowness model is a matrix (denoted by S € R"1*"z)
with the grids’ slowness values as the elements. In this case
study, we adopt a slowness model from [2] as shown in
Fig. 13(a), which is a 1 x 1km? square field with a wavy
pattern and a barrier stripe in the middle. The pattern and
the barrier create challenges to the event localization and will
also better exhibit the effectiveness of PhyAug in addressing
heterogeneous medium.

There are a total of M seismic sensors deployed in the field.
When there is an event occurring in the field, the propagation
path of the seismic wave front from the event source to any
sensor follows a straight ray path. For instance, Fig. 13(b)
shows the ray paths for the eight sensors considered in this
case study. Note that this case study can be also extended to
address the refraction of the seismic wave at the boundary
of any two grids by using a ray tracing algorithm [9] to
determine the signal propagation path. In Fig. 13(b), the
deployment of the sensors at the field boundary is consistent
with the practices of floor event monitoring [13] and volcano
activity monitoring [27]. The seismic event locations follow
a Gaussian distribution centered at the field center.

In what follows, we model the seismic signal propagation
process for the Ith event. For the mth sensor, denote the
propagation ray path by p; ,; denote the ray tracing matrix
by A;m € RY>W2 where its (i, j)th element is the length
of pi m in the (i, j)th grid. If p; ,,, does not go through the
(i, j)th grid, the corresponding element of A; ,, is zero. Let
., € RN denote a row vector flattened from Al m in
a row-wise way. Therefore, the ray tracing matrix for all
sensors in the [th event, denoted by A; € RM*N is A; =
[a;1;a72;. . .;a;,m] Let t; ,, denote the time for the seismic
wave front to propagate from the Ith event’s source to the
mth sensor. Denote t; = [t;15t1.2;...;tim] € RM*L Let
s € RN*! denote a column vector transposed from the row
vector that is the row-wise flattening of the slowness model
S. Thus, the first principle governing the propagation times
is

t; = Ays. (1)

Note that the flattened slowness model s is identical for all
events. Denote by?l = [t1.1;t1.2; - - . ;1. m] the measurements
of the propagation times. We assume t; = t; + €, where the
measurement noise € € R is a random variable following
an M-dimensional Gaussian distribution N (0, 62l ). In
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Figure 13: The 1 x 1km? 2D field considered in the seismic source localization case study. (a) The ground-truth
slowness model with 100 X 100 grids. (b) Seismic event source locations and their ray paths to sensors. (c)-(e) The
estimated slowness models with 25, 50, and 100 seismic events that occur at random positions in the 2D field as

the training samples, respectively.

the numerical experiments, we set o, = & - t;, where £ is
called noise level and 1; is the average value of the elements
in t;. In the evaluation experiments, the default noise level
is & = 2%.

In the TDoA-based fingerprinting approach, a target-domain
training data sample consists of the position of the triggered
event as the label and the TDoA measurements as the feature.
Specifically, if the first sensor is chosen to be the reference,
the feature of the [th event is

o o M
£ = [T =t s — Bt - -t — B1) € RMZDXL ()

A support vector machine (SVM) or DNN can be trained
based on a training dataset and then used to localize an event
at run time. The research questions addressed in this case
study are as follows. First, how to exploit the first principle
in Eq. (1) to augment the training dataset? Second, to what
extent the demand on actual training data samples can be
reduced by applying PhyAug?

5.2 PhyAug for Seismic Source Localization

To use the first principle in Eq. (1) to augment the training
dataset, the flattened slowness model s needs to be estimated
using some training data samples. This tomography problem
can be solved by the Bayesian Algebraic Reconstruction Tech-
nique (BART) or Least Squares with QR-factorization (LSQR)
algorithm [16]. In this work, we apply BART to generate an
estimated slowness model denoted by § based on a total of L
training samples collected by triggering events with known
positions in the field. The details of BART are omitted here
due to space constraint and can be found in [20]. Figs. 13(c)-
(e) show § when L = 25, L = 50, and L = 100, respectively.
We can see that when more seismic events are used, the §
is closer to the ground truth shown in Fig. 13(a). The above
tomography process uses L labeled target-domain data sam-
ples. Thus, PhyAug for this case study requires target-domain
class labels as indicated in Table 1. As PhyAug can signif-
icantly reduce the amount of needed target-domain data

samples as shown shortly, the related overhead is largely
mitigated.

With the estimated slowness model §, we can generate a
large amount of augmented fingerprints to extend the train-
ing dataset. Specifically, to generate the xth augmented fin-
gerprint denoted by t,, we randomly and uniformly draw a
position from the 2D field as the event source location and
then compute the ray tracing matrix A, and the fingerprint
ty = AxS. Lastly, the SVM or DNN is trained using the ex-
tended training dataset consisting of the L genuine training
samples and X augmented training samples.

With the above approach, we can generate any number
of augmented training samples. In this case study, we adopt
the following approach to decide the volume of augmented
training samples. Initially, we set X = 100 X N, where N
is the number of grids, and train the SVM/DNN with the
augmented training dataset. We double the volume of the
augmented training samples (i.e., X = 2 X X) until the vali-
dation accuracy of the trained SVM/DNN saturates.

5.3 Performance Evaluation

We use both SVM and multilayer perceptron (MLP) for finger-
print-based source localization. We implement SVM using
LIBSVM 3.24 [3]. It uses radial basis function kernel with two
configurable parameters C and y. During training, we apply
grid search to optimize the settings of C and y. In addition,
we construct a 5-layer MLP. The numbers of neurons in
the layers are M, 1024, 1024, 512, and N, respectively. For
training, a 0.2 dropout rate is used between any two hidden
layers to prevent overfitting. We use cross-entropy as the
loss function at the output layer as the training feedback.

5.3.1 Advantages brought by PhyAug to SVM/MLP-based
fingerprinting approach. We set N = 20 X 20. We use the grid-
wise inference accuracy as the evaluation metric. Fig. 14a
shows the inference accuracy of SVM and MLP, without and
with PhyAug, versus the training data volume L. First, we
discuss the results of SVM and MLP without PhyAug. We can
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Figure 14: Impact of PhyAug on SVM/MLP-based fin-
gerprinting approaches (number of grids: 400; ¢ = 2%).

see that, the inference accuracy of SVM and MLP increases
with L. When more than 8,000 training samples are provided,
SVM and MLP achieve more than 92% inference accuracy.
When less than 11,000 training samples are provided, SVM
outperforms MLP; otherwise, MLP outperforms SVM. This
observation is consistent with the general understanding that
deep learning with “big data” outperforms the traditional ma-
chine learning approaches. Second, we discuss the results of
SVM and MLP with PhyAug. The inference accuracy of SVM-
PhyAug and MLP-PhyAug also increases with L. With more
training samples, the estimated slowness model § is more
accurate. As a result, the augmented data samples will be of
higher quality, thus helping the SVM/MLP achieve higher
test accuracy. From Fig. 14a, we can see that PhyAug boosts
the inference accuracy of SVM and MLP when the training
data volume is limited. Fig. 14b shows the ratio of the training
data volumes required by a classifier with/without PhyAug
to achieve a specified inference accuracy. With PhyAug, only
less than 3% training samples are needed. This shows that
PhyAug is very effective in reducing the demand on training
data.

5.3.2  Impact of noise level. The noise level of TDoA data af-
fects the accuracy of §. Our evaluation results in Appendix B
show that PhyAug requires 1% to 8% of actual training data
required by SVM or MLP when ¢ increases from 0 to 8%.

5.3.3 Summary. Different from the KWS and ASR case stud-
ies that use PhyAug to recover recognition accuracy loss
mainly caused by sensor hardware characteristics, this case
study uses PhyAug to reduce the demand for actual training
data in dealing with the complexity of the sensed physi-
cal process. Although this case study is primarily based on
numerical experiments, the results provide baseline under-
standing on the advantages brought by PhyAug.

Wenjie Luo, Zhenyu Yan, Qun Song, and Rui Tan

6 DISCUSSIONS

The three case studies have demonstrated the advantages of
exploiting the first principles in dealing with domain shifts
that are often experienced by deployed sensing systems. Pin-
pointing the useful first principles can be challenging in
practice and requires separate studies/experimentation for
different applications. For the applications that lack useful
first principles, we may fall back to the existing physics-
regardless transfer learning approaches. However, the fall-
back option should not discourage us from being discerning
on the exploitable first principles in the pursuit of advancing
and customizing deep learning-based sensing in the domain
of physics-rich cyber-physical systems. In what follows, we
briefly mention several other sensing tasks that PhyAug may
be applicable to, which are also interesting for future work.

m Polynomial transforms can describe the optical distor-
tions of the camera lens that may be introduced purposely
(e.g., fisheye lens) [19]. Visual sensing applications can adapt
to varied optical distortions to improve DNN performance.

®m Room impulse response (RIR) describes indoor audio
processes. Smart voice-based appliances can exploit RIR as
the first principle for effective adaptations to the deploy-
ment environments. Acoustic-based indoor localization with
deep learning [22] can exploit RIR to reduce target-domain
training data sampling complexity.

m Computational fluid dynamics (CFD) describes the ther-
mal processes in indoor spaces (e.g., data centers). A trained
deep reinforcement learning-based environment condition
controller can adapt to new spaces with CFD models and a
few target-domain data samples in each new space.

7 CONCLUSION

This paper described PhyAug, an efficient data augmenta-
tion approach to deal with domain shifts governed by first
principles. We presented the applications of PhyAug to three
case studies of keyword spotting, automatic speech recog-
nition, and seismic event localization. They have distinct
task objectives and require deep models with quite differ-
ent architectures and scales. The extensive and comparative
experiments showed that PhyAug can recover significant por-
tions of accuracy losses caused by sensors’ characteristics
and reduce target-domain training data sampling complexity
in dealing with the domain shifts caused by the variations
of the dynamics of the sensed physical process.
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SVM/DNN VS. LEAST SQUARES
METHOD FOR SEISMIC SOURCE
LOCALIZATION

The estimated slowness model § can be directly used to es-
timate the source location at run time by a least squares
method. In the least squares method, we apply differential
evolution (DE), which is a population-based metaheuristic
search algorithm, to perform grid-granular search and itera-

tively improve a candidate solution p with || — f (A,8)

||§2 as

the error metric. In the above error metric, the f is the feature
vector of TDoA measurements given by Eq. (2) for the run-
time event; the A, is the ray tracing matrix of the candidate
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Figure 16: Impact of TDoA measurement noise level
on PhyAug’s effectiveness.
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Figure 15: Performance comparison of differential
evolution (DE), SVM, and MLP.

position p; the f(-) is a function converting the seismic prop-
agation times to the feature vector of TDoA measurements.
Fig. 15 compares the performance of DE, SVM, and MLP in
terms of average execution time over 100 events. In the eval-
uation, we increase the number of grids N for finer inference
granularity. Fig.15a shows the execution time versus N. From
aregression analysis on the results, DE has a time complexity
of O(N%%%). It’s execution time is several orders of SVM and
MLP. For instance, when N = 22500, DE’s execution time is
50.73 s, which is about 23x and 12,500x longer than SVM’s
and MLP’s, respectively. The long response delays make DE

Wenjie Luo, Zhenyu Yan, Qun Song, and Rui Tan

unsuitable for a range of time-critical applications such as
earthquake early warning [5]. From Fig. 15a, the execution
time of ML is within 10 ms when N is up to 22,500. Fig. 15b
shows the average localization error in terms of Euclidean
distance versus N. We can see that the three approaches give
comparable localization accuracy. From the above results,
SVM and MLP are superior to DE due primarily to response
times.

B IMPACT OF NOISE LEVEL ON PHYAUG
FOR SEISMIC SOURCE LOCALIZATION

This appendix contains experiment results on the impact
of noise level ¢ on the performance of PhyAug for seismic
source localization. As defined in §5.1, the TDoA measure-
ment contains a random noise following N (0p1, (£€;)*In).
The histograms in Fig. 16 show the grid-wise localization
accuracy of SVM, MLP, and their PhyAug-assisted variants
when £ increases from 0% to 8%. The dashed curve in Figs. 16a
and 16b shows the ratio between the volumes of actual train-
ing data required by SVM/MLP with and without PhyAug.
The SVM/MLP approach uses the same amount of training
data for all £ settings, whereas we adjust the amount of the
actual training data used for the PhyAug-assisted variant

to achieve the same grid-wise localization accuracy as the
SVM/MLP approach. From the figure, the localization ac-

curacy decreases with &. This is consistent with intuition
because larger noise levels lead to more classification errors.
In addition, the ratio of the actual training data amounts
required by SVM/MLP with and without PhyAug increases
with £. For example, MLP-PhyAug only requires about 1% of
the training data needed by MLP without PhyAug to achieve
the same 96% accuracy when & = 0%; this ratio increases to
about 8% to achieve the same 77% accuracy when & = 8%.
This is because PhyAug needs more actual training data
to estimate a good slowness model when the noise level is
higher. Nevertheless, PhyAug reduces the demand for actual
training data by a factor of more than 10 when ¢ is up to 8%.
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