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Run-time domain shifts from the training phase caused by sensor characteristic variation incur performance drops of the

deep learning-based sensing systems. To address this problem, existing transfer learning techniques require substantial

target-domain data and incur high post-deployment overhead. Diferently, we propose to exploit the irst principle governing

the domain shift to reduce the demand for target-domain data. Speciically, our proposed approach called PhyAug uses the

irst principle itted with few labeled or unlabeled data pairs collected by the source sensor and the target sensor to transform

the existing source-domain training data into the augmented target-domain data for calibrating the deep neural networks.

In two audio sensing case studies of keyword spotting and automatic speech recognition, PhyAug recovers the recognition

accuracy losses due to microphones’ characteristic variations by 37% to 72% with 5-second unlabeled data collected from the

target microphones. In a case study of acoustics-based room recognition, PhyAug recovers the recognition accuracy loss

caused by smartphone microphone variation by 33% to 80%. In the last case study of isheye image recognition, PhyAug

reduces the image recognition error due to the camera-induced distortions by 72%.

CCS Concepts: · Computer systems organization→ Embedded and cyber-physical systems; · Computing method-

ologies→ Neural networks; · Hardware→ Sensor applications and deployments.

Additional Key Words and Phrases: Smart sensors, neural networks, data augmentation, domain adaptation

1 INTRODUCTION

Recent advances of deep learning have attracted great interest of applying it in various embedded sensing systems.

The deep neural networks (DNNs), albeit capable of capturing sophisticated patterns, require signiicant amounts

of labeled training data to realize the capability. A sensing DNN trained on a design dataset is often observed

run-time performance degradations, due to domain shifts [13]. The shifts are generally caused by the sensor

characteristics deviations in the real deployments from those captured by the design dataset.
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Transfer learning [18] has received increasing attention for addressing domain shifts. It is a cluster of approaches

aiming at storing knowledge learned from one task and applying it to a diferent but related task. Under the

transfer learning scheme, ideally, with little new training data, we can transfer a DNN trained from the source

domain (i.e., the design dataset) to the target domain (i.e., data captured by a speciic sensor in real deployment).

Prevalent transfer learning techniques, including freeze-and-train [22] and domain adaptation [18], require

substantial training data collected in the target domain. The freeze-and-train approach retrains selected layers

of a DNN with new target-domain samples to implement the model transfer. Domain adaptation trains a new

DNN to transform the target-domain inference data back to the source domain. For instance, the Mic2Mic [12]

trains a cycle-consistent generative adversarial network (CycleGAN) to perform the translation between two

microphones with distinct characteristics. The training of CycleGAN requires about 20 minutes of microphone

recording from both domains for a keyword spotting task [12]. In summary, although the prevalent transfer

learning techniques reduce the demands on the target-domain training data in comparison with learning from

scratch in the target domain, they still need substantial target-domain data to implement the model transfer. This

paper exploits the irst principles governing the sensor characteristics to reduce the demand on target-domain

data for model transfer, vis-à-vis the aforementioned physics-regardless approaches [12, 18, 22].

Recent studies attempt to incorporate prior knowledge in the form of commonsense [35] or physical laws

[26, 27] to increase the learning eiciency. The presentation of the prior knowledge to learning algorithms is the

core problem of physics-constrained machine learning. In [26, 27], the closed-form physical laws are incorporated

into the loss function of DNN training. The improved learning eiciency of the physics-constrained machine

learning encourages exploiting irst principles to address domain shifts more eiciently. However, physics-

constrained machine learning requires new DNN architectures and/or training algorithms; it is not to exploit

irst principles in transferring existing DNNs to address the domain shift problems.

In the domain of physics-rich cyber-physical systems, the domain shifts caused by the property of the sensors

are often governed by irst principles. For example, the performance of a microphone is often characterized by

the frequency response curve [13]; a isheye camera is characterized by the polynomial function [29], etc. In this

paper, we propose a new approach called physics-directed data augmentation (PhyAug) to use a minimum amount

of data collected from the target sensor to estimate the parameters of the irst principle governing the domain

shift caused by a speciic sensor, then use the parametric irst principle to generate augmented target-domain

training data. The augmented target-domain data samples are used to transfer or retrain the source-domain

DNN. PhyAug has the following two key features. First, diferent from the conventional data augmentations that

apply unguided ad hoc perturbations (e.g., noise injection) and transformations (e.g., scaling, rotation, etc) on

existing training data to improve the DNNs’ robustness against variations, PhyAug augments the training data

strategically by following irst principles to transfer DNNs. Second, PhyAug uses augmented data to represent

the domain shifts and thus requires no modiications to the legacy DNN architectures and training algorithms. In

contrast, recently proposed domain adaptation approaches based on adversarial learning [1, 12, 15, 30] update the

DNNs under new adversarial training architectures that need extensive hyperparameter optimization and even

application-speciic redesigns. Such needs largely weaken their readiness, especially when the original DNNs are

sophisticated such as the DeepSpeech2 [16] for automatic speech recognition.

This paper applies PhyAug to four case studies and quantiies the performance gains compared with other

possible approaches. The irst two case studies aim to adopt DNNs for keyword spotting (KWS) and automatic

speech recognition (ASR) respectively to individual microphones. KWS and ASR difer in DNN model depth and

complexity. The domain shifts are from the microphone’s hardware characteristics. We apply PhyAug to proile

the source and the target microphones by playing a 5-second white noise, then augment the source-domain data to

re-train the DNN for the target domain. PhyAug recovers the microphone-induced accuracy loss by 53%-72% and

37%-70% in KWS and ASR, respectively. The third case study is the acoustics-based room recognition (ARR). Our
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experiment shows that the room recognition accuracy drop can be up to 80% if the pre-trained model is evaluated

using the data collected from a speciic smartphone microphone. We apply PhyAug to proile the source and

the target smartphones by recording 1-minute acoustic background spectrograms in any room simultaneously,

then augment the source smartphone’s data to train the DNN for the target smartphone. PhyAug recovers the

accuracy loss by 33%-80% for the target smartphone. The fourth case study focuses on isheye image recognition

(FIR). We apply PhyAug to adapt a ResNet-50 DNN designed for pinhole cameras to a speciic isheye camera

using the estimated parameters. The parameters estimation for a isheye camera only requires around 20 image

samples taken on a checkerboard picture. PhyAug recovers the camera-induced object recognition accuracy loss

by 72% and avoids the compute-intensive image rectiication.

The main contribution of this paper is as follows. We propose to leverage the irst principle governing the

sensing process and itted with a small amount of source- and target-domain data to extensively augment the

target-domain data for model transfer. This approach is more eicient than the physics-regardless transfer

learning in terms of target-domain data sampling complexity. The irst principle’s parameters that capture the

sensor characteristics can be obtained from either sensor speciication or a one-time calibration process. With the

derived the parametric irst principle, we can avoid collecting substantial training data from each speciic sensor

forming an individual target domain. The data and source code for the case studies are made publicly available.1

The remainder of this paper is organized as follows. ğ2 overviews the PhyAug approach and reviews related

work. ğ3, ğ4, ğ5, and ğ6 present the four case studies. ğ7 discusses several issues. ğ8 concludes this paper.

2 APPROACH OVERVIEW & RELATED WORK

The design of the DNN used for a sensing task is often driven by a training dataset that is either publicly available

or collected by the system designer. However, when the DNN is deployed, the actual distribution of the inference

data samples may be diferent from that of the training dataset. For instance, the sensors used for collecting the

training and inference data samples can have diferent characteristics caused by hardware model diferences

and manufacturing imperfections across sensors of the same model. The basic principle of PhyAug is to obtain

the sensor characteristics using low-overhead approaches and then learn the mapping from the source-domain

sensor to the target-domain sensor. After the mapping is learned, we may convert the training data collected

by the source-domain sensor to the augmented data that are consistent with the target-domain sensor. As a

result, the deep model retrained using the augmented data can work efectively on the data collected by the

target-domain sensor.

2.1 PhyAug Approach Overview

Fig. 1 illustrates PhyAug’s worklow using a simple example, where the DNN performs two-class classiication

based on two-dimensional data samples and the irst principle governing the domain shift is a nonlinear polynomial

transform. Such transform can be used to characterize camera lens distortion [21]. To simplify the discussion,

this example considers class-independent domain shift, i.e., the transform is identical across all the classes. Note

that PhyAug can deal with class-dependent domain shifts, which will be discussed later. The general transfer

learning approaches regardless of the irst principles need to draw substantial data samples from both the source

and target domains. Then, they apply domain shift learning techniques to update the existing source-domain

DNN or construct a preix DNN [12] to address the domain shift. Extensive data collection in the target domain

often incurs undesirable overhead in practice.

Diferently, as shown in the Fig. 1, PhyAug applies the following four steps to avoid extensive data collection

in the target domain. ❶ The system designer identiies the parametric irst principle governing the domain

shift. For the current example, the parametric irst principle is x ′ ≙ a1x + a2y + a3xy + a4x2 + a5y2 and y′ ≙

1https://github.com/jiegev5/PhyAug
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Fig. 1. PhyAug workflow.

b1x +b2y+b3xy+b4x2+b5y2, where (x ,y) and (x ′,y′) are a pair of data samples in the source and target domains,

respectively, and ai , bi are unknown parameters. ❷ A small amount of unlabeled data pairs are collected from the

source and target sensors to estimate the parameters of the irst principle. For this example, if the domain shift

is perturbation-free, the minimum number of data pairs needed is the number of unknown parameters of the

polynomial transform. If the domain shift is also afected by other unmodeled perturbations, more data pairs can

be drawn to improve the accuracy of estimating the parameters under a least squares formulation. If the domain

shift is class-dependent, the data pair sampling and parameter estimation should be performed for each class

separately. ❸ All the existing source-domain training data samples are transformed to the target domain using

the itted irst principle, forming an augmented training dataset in the target domain. ❹ With the augmented

training dataset, various techniques can be employed to transfer the existing DNN built in the source domain

to the target domain. For instance, we can retrain the DNN with augmented data. The retraining can use the

existing DNN as the starting point to speed up the process. For instance, for the DeepSpeech2 [16] which is

a large-scale ASR model used in ğ4, the retraining only requires half of the training time compared with the

training from scratch using the augmented data.

For sensing DNN design, the source domain is in general the design dataset. In such case, the source domain

cannot be excited any more for data pair sampling in both domains simultaneously. However, we can recreate the

excitation to collect the corresponding target-domain samples. For instance, we can use a speaker to play voice

samples from the source-domain dataset and collect the corresponding samples from a target-domain microphone.
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Table 1. Categorization, used techniques, and requirements of various solutions to address domain shits.

Category Used Solution Applications Requirements

technique in publication Source

domain

label

Target

domain

label

Paired la-

bel data

First

principle

Target do-

main data

volume*

D
o
m
ai
n
ad
ap
ta
ti
o
n

(M
o
d
el
tr
an
sf
er
)

FADA [15] computer vision ✔ ✔ ✔ ś low

Adversarial ADDA [30] computer vision ś ś ś ś high
learning TransAct [1] activity sensing ś ś ś ś medium

Mic2Mic [12] voice sensing ś ś ś ś high
Meta learning MetaSense[5] voice & motion ✔ ✔ ś ś low
Contrastive

CDCL [32] computer vision ✔ ś ś ś medium
learning
Data

PhyAug

voice sensing ś ś ś ✔ low
augmentation room recognition ś ś ś ✔ low

computer vision ś ś ś ✔ low

Model ro- Data
CDA [13]

voice and activity
ś ś ś ✔ medium

bustness augmentation sensing
∗ The bars represent oracle scales partially based on the reported numbers in respective publications. Fully comparable scales are dii-
cult to obtain because the solutions are designed for diferent applications. PhyAug is compared with FADA, Mic2Mic, and CDA in the
evaluation sections of this paper. Reasons for excluding other approaches from the comparison will be discussed in the case studies.

Similarly, we can display image samples from the source-domain dataset and collect the corresponding samples
from a target-domain camera that may have optical distortions.

2.2 Related Work

The applications of deep learning in embedded sensing systems have obtained superior inference accuracy
compared with heuristics and conventional machine learning. Various approaches have been proposed to address
the domain shift problems in embedded sensing [1, 5, 12, 13] and image recognition [15, 30, 32]. Table 1 summarizes
the categorization, used techniques, and requirements of these approaches. In what follows, we discuss the
important details of these approaches and their diferences from PhyAug.
∎ Domain adaptation: Few-shot Adversarial Domain Adaptation (FADA) [15] transfers the model with

limited amount of target-domain training data. It uses the supervised adversarial learning technique to ind a
shared subspace of the data distributions in the source and target domains. FADA requires labeled and paired
data samples from both the source and target domains. Adversarial Discriminative Domain Adaptation (ADDA)
[30] uses unsupervised adversarial learning to learn a feature encoder for the target domain. Although ADDA
requires neither class labels nor data pairing, it demands substantial unlabeled target-domain data. TransAct in
[1] considers sensor heterogeneity in human activity recognition and uses unsupervised adversarial learning
to learn stochastic features for both domains. It requires hundreds of unlabeled target-domain data samples.
Mic2Mic [12] applies CycleGAN, which is also an adversarial learning technique, to map the target-domain audio
recorded by a microphone łin the wildž back to the source-domain microphone for which the DNN is trained.
Mic2Mic requires about 20 minutes of speech recording from both microphones, which represents an overhead. It
performs one-to-one translations. Our experiment results in ğ3 and ğ4 show that CycleGAN may underperform
when the source domains are publicly available speech datasets collected using numerous microphones in diverse
environments. Cross-domain contrastive learning (CDCL) exploits contrastive self-supervised learning for domain
adaptation. Speciically, it minimizes the distance of the cross-domain data samples from the same classes via
the contrastive loss, such that the trained model is invariant to the domain diference. We show in the ğ3 this
approach requires a signiicant amount of target domain data to achieve a satisfactory result.

5



DNN

(a) Data augmentation for model robustness (e.g.,[13]). (b) Data augmentation for model transfer (PhyAug).

Fig. 2. Diferent purposes of data augmentation illustrated using voice sensing. Note that the source domain may contain

many microphones used to collect training samples.

PhyAug is a domain adaptation approach. Compared with ADDA [30], TransAct [1], and Mic2Mic [12] that
are based on unsupervised adversarial learning and thus require substantial target-domain training data, PhyAug
exploits the irst principle governing the domain shift to reduce the demand on target-domain data. Although
FADA [15] aims at reducing the demand for target-domain data, it requires extensive other information such as
class labels in both domains. In contrast, PhyAug requires unlabeled data only. Diferent from Mic2Mic [12] that
requires the source domain to be a single microphone, PhyAug admits a source-domain dataset collected via
many (and even unknown) microphones in the KWS and ASR case studies. This enlarges the application scope
because the datasets used to drive the design of DNNs for real-world applications often consist of recordings
from diverse sources.

MetaSense [5] employs meta-learning [10] to rapidly adapt model to the target user’ condition with few shots.
It uses data collected from multiple source domains to train a base model that can adapt to a target domain
related to the source domains. However, it requires substantial training data from both domains and class labels
from each source domain. For voice sensing, MetaSense cannot use a source-domain dataset collected via many
unlabeled microphones. But PhyAug can.
As an extension to the previous work [11], we apply our proposed PhyAug to two new case studies. First,

the new isheye recognition (FIR) case study extends the application scope of PhyAug from audio sensing to
more complex image recognition. FIR and keyword spotting (KWS) share some similarities in adopting the
convolutional neural networks (CNNs) for classiication. However, FIR is more challenging compared with KWS
in terms of task complexity. This extension shows that PhyAug can be applied to diferent multimedia sensing
tasks with varying sensing complexities. Second, the new acoustic room recognition (ARR) case study extends
the application scope of PhyAug from multimedia data to the Internet of Things (IoT) sensing data. IoT sensing
such as ARR can be more challenging compared to multimedia sensing. The reasons are two-fold. First, IoT
sensing data are generally uninterpretable by humans, whereas multimedia data are human-interpretable and
often involve humans for labeling. Second, the subtle diferences among the classes of IoT sensing data also
render more challenges for deep learning models to learn efective representations. Apart from the case studies,
we also strengthen the experiments and provide more in-depth analysis.

6



∎Model robustness via data augmentation: Data augmentation has been widely adopted for enhancing
model robustness. As illustrated in Fig. 2a, a conventional scheme presumes a number of domain shifts (e.g.,
scaling, rotation, noise injection, etc) and follows them to generate augmented training samples. Then, the
original and the augmented data samples are used to train a single DNN. During the serving phase, this DNN
remains robust to the domain shift resembling the presumption. However, should the actual domain shift be
out of the presumption, the robustness is lost. The study [13] adopts the above conventional data augmentation
(CDA) approach to mitigate the impact of sensor heterogeneity on DNN’s accuracy. Speciically, it estimates the
probability distribution of sensors’ heterogeneity characteristics from a heterogeneity dataset and then uses the
characteristics sampled from the estimated distribution to generate augmented training data. As the dataset needs
to cover heterogeneity characteristics, its collection in practice incurs a considerable overhead. The heterogeneity
dataset in [13] consists of 2-hour recordings of 20 diferent microphones placed equidistant from an audio speaker.
If the characteristic of a microphone łin the wildž is out of the estimated characteristic distribution (i.e., a missed
catch), the enhanced DNNmay not perform well. Since CDA uses sensor characteristics, we view it as an approach
directed by irst principles. Diferent from CDA’s objective of enhancing model robustness, PhyAug uses data
augmentation to transfer a model to a speciic target domain (i.e., sensor). Fig. 2b illustrates this in the context of
voice sensing, where microphones’ unique characteristics create domains. PhyAug constructs a dedicated DNN
for each target domain. Thus, PhyAug is free of the missed catch problem.

2.3 Methodology

As this paper proposes PhyAug which is a domain adaptation approach, it is desirable to show PhyAug’s
applicability to multiple applications and its scalability to address diferent levels of pattern sophistication.
Therefore, we apply PhyAug to four applications, i.e., KWS, ASR, ARR and FIR. Although KWS and ASR are
two speciic human voice sensing tasks, they have signiicantly diferent complexities. ARR is a mobile sensing
application. The benchmark results presented in this paper show that ARR performance is greatly afected by
smartphone heterogeneity. FIR is a visual sensing application where the isheye camera produces non-linear
distortion on the captured images, causing domain shift from the pinhole camera. For each case study, we compare
PhyAug with multiple existing approaches to show the advantages and performance gains of PhyAug.

3 CASE STUDY 1: KEYWORD SPOTTING (KWS)

Human voice sensing is important for human-computer interactions in many Internet of Things (IoT) applications.
At present, the DNN for a speciic human voice sensing task is often trained based on a standard dataset. However,
as IoT microphones are often of small form factors and low cost, their recordings often sufer degraded and varied
voice qualities. In addition, the environment that an IoT microphone resides in can also afect its recording. For
instance, the echo patterns in indoor spaces of diferent sizes can be distinct. Such run-time variations may be
poorly captured by the standard dataset. As a result, the DNN yields reduced accuracy after the deployment.

In this paper, we consider two human voice sensing functions: KWS and ASR. We apply PhyAug to address the
domain shift problem. Speciically, we start from a swift process of proiling the IoT microphone’s frequency
response curve (FRC) with the help of a smartphone. Then, we use the FRC to transform the standard dataset.
Finally, we retrain the DNN using the transformed dataset to obtain a personalized DNN for the IoT microphone.

In the case studies of KWS (ğ3) and ASR (ğ4), source domain is the standard dataset originally used to train
the DNN; target domain is the dataset of voice samples captured by a speciic deployed microphone; irst
principle is the microphone’s FRC induced by the microphone hardware and its ambient environment.
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Fig. 3. CNN structure used in KWS case study.

Fig. 4. Microphones & experiment setup.

3.1 Problem Description

We conduct a set of preliminary experiments to investigate the impact of diverse microphones on the KWS
accuracy. Based on the results, we state the problem.

3.1.1 Standard dataset and DNN. We use Google Speech Commands Dataset [33] as the standard dataset in
this case study. It contains 65,000 one-second utterances of 30 keywords collected from thousands of people.
Audio iles are sampled at 16 kilo samples per second (ksps). We pre-process the voice samples as follows. First,
we apply a low-pass ilter (LPF) with a cutof frequency of 4 kHz on each voice sample, because human voice’s
frequency band ranges from approximately 0.3 kHz to 3.4 kHz. Then, for each iltered voice sample, we generate
40-dimensional Mel-Frequency Cepstral Coeicients (MFCC) frames using 30-millisecond window size and
10-millisecond window shift. The z-score normalization is applied on each MFCC frame. Eventually, each voice
sample is converted to a 101× 40 MFCC tensor. The dataset is randomly split into training, validation, and testing
sets following an 8:1:1 ratio.

We implement a CNN to recognize 10 keywords, i.e., łyesž, łnož, łleftž, łrightž, łupž, łdownž, łstopž, łgož, łonž,
and łofž. We also add two more classes to represent silence and unknown keyword. Fig. 3 shows the structure of
the CNN. It achieves 90% test accuracy, which is similar to that in [36] and referred to as the oracle test accuracy.
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3.1.2 Impact of microphone on KWS performance. In this section, we demonstrate that the CNN has performance
degradation as a result of microphone heterogeneity. We test the CNN on samples captured by ive diferent
microphones named M1, M2, M3, M4, and M5 as shown in Fig. 4 that have list prices from high ($80) to low ($3.5).
M1 and M2 are two high-end desktop cardioid condenser microphones, supporting sampling rates of 192 ksps
at 24-bit depth and 48 ksps at 16-bit depth, efective frequency responses of ︁30Hz, 16 kHz︁ and ︁30Hz, 15 kHz︁,
respectively. M3 is a portable clip-on microphone with an efective frequency response range of ︁20Hz, 16 kHz︁.
M4 and M5 are two low-cost mini microphones without detailed speciications. Fig. 4 shows the placement of
the microphones. For fair comparison and result reproducibility, we use an Apple iPhone 7 to play the original
samples of the test dataset through its loudspeaker, with all microphones placed at equal distances away.

The samples recorded by eachmicrophone are fed into the KWSCNN for inference. Fig. 5 shows the test accuracy
for each microphone. Compared with the oracle test accuracy of 90%, there are 14% to 19% absolute accuracy
drops due to domain shifts. By inspecting the spectrograms of the original test sample and the corresponding
ones captured by the microphones, we can observe the diferences. This explains the distinct accuracy drops
among microphones. From the above experiment results, the research questions addressed in this case study are
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as follows. First, how to proile the characteristics of individual microphones with low overhead? Second, how to
exploit the proile of a particular microphone to recover KWS’s accuracy?

3.2 PhyAug for Keyword Spoting

PhyAug for KWS consists of two procedures: fast microphone proiling and model transfer via data augmentation.

3.2.1 Fast microphone profiling. A microphone can be characterized by its frequency response consisting of
magnitude and phase. We only consider the magnitude component, because the information of a voice signal is
largely represented by the energy distribution over frequencies, with little/no impact from the phase of the voice
signal in the time domain. Let X(f ) and Y(f ) denote the frequency-domain representations of the considered

microphone’s input and output. The FRC to characterize the microphone is H(f ) ≙ ︀Y (f )︀︀X (f )︀ , where ︀ ⋅ ︀ represents
the magnitude.
We propose a fast microphone proiling approach that estimates H(f ) in a short time. It can be performed

through a factory calibration process or by the user after the microphone is deployed. Speciically, a loudspeaker
placed close to the target microphone emits a band-limited acoustic white noise n(t) for a certain time duration.
The frequency band of the white noise generator is set to be the band that we desire to proile. Meanwhile, the

target microphone records the received acoustic signal yn(t). Thus, the FRC is estimated as H(f ) ≙ ︀ℱ︁yn(t)︁︀︀ℱ︁n(t)︁︀ ,

where ℱ︁⋅︁ represents the Fourier transform. As n(t) has a nearly constant power spectral density (PSD), this
approach proiles the microphone’s response at all frequencies in the given band.

In our experiments, we use the iPhone 7 shown in Fig. 4 to emit the white noise. We set the frequency band of
the noise generator to be ︁0, 8 kHz︁, which is the Nyquist frequency of the microphone. Fig. 6 shows the measured
FRCs of the ive microphones used in our experiments. Each FRC is normalized to ︁0, 1︁. We can see that the
microphones exhibit distinct FRCs. In addition, we observe that the two low-end microphones M4 and M5 have
lower sensitivities to the higher frequency band, i.e., 5 kHz to 8 kHz, compared with the microphones M1, M2,
and M3.

3.2.2 Model transfer via data augmentation. We augment training samples in the target microphone’s domain
by transforming the original training samples using FRC. The procedure for transforming a sample x(t) is as
follows: (1) Apply the pre-processing LPF on x(t) to produce x ′(t); (2) Conduct short-time Fourier transform
using 30-millisecond sliding windows with an ofset of 10 milliseconds on x ′(t) to produce 101 Fourier frames,
i.e., Xi(f ), i ≙ 1, 2, . . . 100; (3) Multiply the magnitude of each Fourier frame with the FRC to produce ︀Yi(f )︀ ≙
H(f ) ⋅ ︀Xi(f )︀; (4) Generate the MFCC frame from each PSD ︀Yi(f )︀2; (5) Concatenate all 101 MFCC frames to
form the MFCC tensor. Lastly, PhyAug retrains the CNN with augmented data samples for the microphone using
the pre-trained CNN as the starting point.

3.3 Performance Evaluation

3.3.1 Alternative approaches. Our performance evaluation employs the following alternative approaches.
∎ Data calibration: At run time, it uses the measured FRC to convert the target-domain data back to the

source-domain data and then applies the pre-trained CNN on the converted data. Speciically, let Yi(f ) denote
the ith Fourier frame after the microphone applies the LPF and short-time Fourier transform on the captured raw

data. Then, it estimates the corresponding source-domain PSD as ︀Xi(f )︀2 ≙ ( ︀Yi(f )︀H(f ) )
2
and generates the MFCC

frame from ︀Xi(f )︀2. The MFCC tensor concatenated from the MFCC frames over time is fed to the pre-trained
CNN.
∎ Conventional data augmentation (CDA) [13]: This alternative captures the essence of the approach in

[13] following the conventional data augmentation scheme illustrated in Fig. 2a. Speciically, one out of the
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ive microphones, e.g., M1, is designated as the testing microphone. The remaining four, e.g., M2 to M5, are
used to generate a heterogeneity dataset [13]. The heterogeneity generator [13] is constructed as follows. For each
microphone in the heterogeneity dataset, FRC is measured multiple times with the fast proiling process. At any
frequency f , the FRC value is modeled by a Gaussian distribution. A Gaussian mixture is formed by the four
heterogeneity-dataset microphones’ Gaussian distributions with equal weights. The Gaussian mixtures for all
frequencies form the heterogeneity generator. Then, each source-domain training sample is transformed by an
FRC sampled from the heterogeneity generator into an augmented sample. Lastly, the DNN is retrained with the
augmented training samples and tested with the samples captured by the testing microphone.
∎ CycleGAN (essence of [12]):Mic2Mic [12] trains a CycleGAN using unlabeled and unpaired data samples

collected from two microphones A and B. Then, CycleGAN can translate a sample captured by A to the domain of
B, or vice versa. Following [12], we train a CycleGAN to translate the samples captured by a target microphone
to the source domain of Google Speech Commands Dataset. To measure the test accuracy, a test sample collected
by a microphone is converted by the corresponding CycleGAN to the source domain and fed into the pre-trained
CNN.

Compared with PhyAug that requires a single 5-second proiling data collection process for each microphone,
CDA repeats the proiling process many times for each heterogeneity microphone to construct the heterogeneity
generator; the training of CycleGAN requires 15 minutes of data collected from each target microphone. Thus,
both alternative approaches have higher overheads.
∎ FADA [15]: It trains a feature encoder and classiier in the source domain. Then, it combines source-domain

and target-domain data to train a domain-class discriminator. Finally, the weights of the feature encoder and
classiier are updated to the target domain through adversarial learning using the domain-class discriminator.
To apply FADA for KWS, we follow the architecture in [15] and modify the KWS model in Fig. 3 by adding
a fully-connected layer before the last dense layer. Thus, the model has a feature encoder (CNN layers) and a
classiier (fully-connected layers).
∎ CDCL [32]: CDCL comprises three steps for domain adaptation. First, we train a domain-invariant feature

encoder to minimize the distance between the source-domain data and the target-domain data via the contrastive
learning. We follow the procedure in [32] and construct the positive and negative data samples as follows. The
data samples from the diferent domains but in the same class are viewed as the positive samples. The data
samples that are in the diferent classes from the same or diferent domains are viewed as negative samples.
Second, we freeze the trained feature encoder and apply it on the labeled source-domain data to train a classiier.
Third, we apply the trained feature encoder and the classiier on the target-domain data to evaluate the domain
adaptation performance. In this paper, the used feature encoder is a ResNet-18 model and the classiier is a
multi-layer perceptron (MLP) consisting of 4 layers. The numbers of neurons in four layers of the MLP are 512,
1024, 1024 and 12.

We exclude the MetaSense, ADDA and TransAct reviewed in ğ2.2 from the baselines for the following reasons.
MetaSense cannot be applied to a source-domain dataset collected via many unlabeled microphones. We obtain
unsatisfactory results for ADDA in the adversarial training with hours’ target-domain training data and extensive
hyperparameter tuning. We suspect that the amount of target-domain training data is still insuicient for ADDA.
Note that PhyAug only requires ive seconds’ unlabeled target-domain data as shown shortly. TransAct is
customized for activity recognition that difers from human voice sensing.

3.3.2 Evaluation results. We apply PhyAug and the alternatives for the ive microphones in Fig. 4. The test
accuracies are shown in Fig. 7. The bars labeled łunmodiiedž are the results from Fig. 5, for which no domain
adaptation technique is applied. We include them as the baseline. The results are explained in detail as follows.
∎ Data calibration: It brings test accuracy improvements for M1, M2, and M3. The average test accuracy gain

is about 4%. For the cheap microphones M4 and M5, it results in test accuracy deteriorations. The reason is as
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Fig. 7. KWS test accuracy using various approaches on tested microphones. Compared with the unmodified baseline, PhyAug

recovers the accuracy losses by 64%, 67%, 72%, 53%, and 56% respectively for the five microphones toward the oracle test

accuracy.

follows. Its back mapping uses the reciprocal of the measured FRC (i.e., 1⇑H(f )), which contains large elements
due to the near-zero elements of H(f ). The larger noises produced by the low-end microphones M4 and M5 are
further ampliied by the large elements of 1⇑H(f ), resulting in performance deteriorations. Thus, although this
approach may bring performance improvements, it is susceptible to noises.
∎ PhyAug: The black bars in Fig. 7 show PhyAug’s results. Compared with the unmodiied baseline, PhyAug

recovers the test accuracy losses by 64%, 67%, 72%, 53%, and 56% for the ive microphones. PhyAug cannot
fully recover the test accuracy losses. This is because PhyAug only addresses the deterministic distortions
due to microphones; it does not address the other stochastic factors such as the environmental noises and the
microphones’ thermal noises.
∎ CDA: It recovers certain test accuracy losses for all microphones. This is because for any target microphone,

there is at least one heterogeneity dataset microphone giving a similar FRC as the target microphone. Speciically,
from Fig. 6, M1, M2, and M3 exhibit similar FRCs; M4 and M5 exhibit similar FRCs (i.e., they have good responses
in lower frequencies). However, PhyAug consistently outperforms CDA. In addition, CDA introduces larger
overhead than PhyAug as discussed in ğ3.3.1.
∎ CycleGAN: It leads to test accuracy deteriorations for all ive target microphones. Although CycleGAN is

efective in translating the domain of a microphone to that of another microphone, which is the basis of Mic2Mic
[12]. Howerver, CycleGAN is inefective in translating a certain microphone to the source domain of a dataset
that consists of recordings captured by many microphones. We illustrate this using an example of CycleGAN
translated audio spectrogram. First, we train a CycleGAN to translate M5 to M1. The irst and the third columns
of Fig. 8a show the spectrograms captured by M1 and M5 for the same sample played by the smartphone in the
setup shown in the paper. We can see that there are discernible diferences. The mid column shows the output
of the CycleGAN, which is very similar to the irst column. This result suggests that CycleGAN is efective
for device-to-device domain translation. Then, we apply the same approach to train a diferent CycleGAN to
translate M5 to the domain of Google Speech Commands Dataset. Fig. 8b shows the results. The third column is
the spectrogram captured by M5 when a dataset sample shown in the irst column is played by the smartphone
in the setup shown in the paper. The mid column is the CycleGAN’s translation result, which has discernible
diferences from the irst column, suggesting the inefectiveness of CycleGAN. An intuitive explanation is that the
CycleGAN shown with samples captured by many microphones during the training phase is confused and caters
into no single microphone. Due to the discrepancy between CycleGAN’s output and the dataset, the pre-trained
CNN fed with CycleGAN’s outputs yields low test accuracy.
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Fig. 8. CycleGAN translation results (mid column). (a) Translation from M5 to M1. High similarity between first and second

columns shows efectiveness of CycleGAN. (b) Translation from M5 to the domain of Google Speech Commands Dataset.

Dissimilarity between first and second columns shows inefectiveness of CycleGAN.

∎ FADA:When we set the number of labeled target-domain samples per class (LTS/C) to 10 for FADA training,
it recovers the accuracy loss for the ive microphones by 56%, 38%, 47%, 47%, and 37%, respectively, as shown in
Fig. 7. The performance of FADA increases with LTS/C. When we increase LTS/C to 20, PhyAug still outperforms
FADA. Note that PhyAug requires a single unlabeled target-domain sample only. In addition, from our experience,
FADA is sensitive to hyperparameter settings.
∎ CDCL: The amount of the used target-domain data per class for contrastive learning is 200. As shown in

Fig. 7, CDCL recovers the accuracy loss for the ive microphones by 50%, 25%, 56%, 53%, and 27%, respectively.
However, the performance of CDCL is sensitive to the amount of target-domain data used for contrastive feature
learning. PhyAug outperforms CDCL even when the number of the used target-domain data samples per class
increases up to 400.

3.4 In-depth Analysis

3.4.1 Data translation performance of diferent approaches. We investigate the data translation performance for
each approach using the T-distributed Stochastic Neighbor Embedding (t-SNE) [31]. t-SNE is a dimensionality
reduction technique to efectively visualize the high-dimensional data in the low-dimensional feature space. As
shown in Fig. 9, the red dots labeled łSourcež represent the source-domain data, i.e., the original keyword spotting
data. The green dots labeled łTargetž represent the target-domain data. The target-domain data presented is
collected by the microphone M4. The blue dots in each subplot represent the translated data using diferent
approaches. Ideally, the data samples of the same color should cluster together. Moreover, the data translated by an
approach from the source-domain data should be close to the target-domain data. To simplify the characterization
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Fig. 9. t-SNE visualization of diferent domain data. The r value reported in the sub-figure caption characterizes the

efectiveness of the approach. It is the ratio of the source-translation and target-translation distances.

of the translation efectiveness, we deine a metric r ≙ ds
dt
, where ds is the average distance between the source-

domain data points and the corresponding translated data points in the t-SNE space and dt is the average distance
between the target-domain data points and the corresponding translated data points. If the value of r is less than
1, the translated data is closer to the source-domain data; otherwise, the translated data is closer to the target
domain. Fig. 9d shows the data translation performance for PhyAug. PhyAug applies the learned FRC to translate
the source-domain data to the target domain. Thus, the translated data via PhyAug is expected to be closer to
the target-domain data. The distance ratio r for PhyAug is 10, indicating that the translated data via PhyAug
is closer to the target-domain data. Thus, when we apply the model trained using the translated data on the
target-domain data, we obtain performance improvement. Fig. 9a shows the data translation performance for
the Data calibration approach. Data calibration uses the learned FRC to calibrate the target-domain data back to
the source domain. Thus the translated data via Data calibration is expected to be closer to the source domain.
The distance ratio r for Data calibration is 7, indicating that the calibrated data are closer to the target-domain
data. When we apply the trained DNN from the source-domain data on the calibrated data, the performance
improvement is limited. Fig. 9b shows the data translation performance for CDA. CDA uses a heterogeneity

generator to construct the augmented data that can contain the target-domain data. Thus the augmented data is
expected to be close to the target-domain data. The distance ratio r for CDA is 0.2, indicating that the augmented
data are closer to the source-domain data. When we apply the DNN trained using the augmented dataset on the
target-domain data, the improvement is limited. Fig. 9c shows the data translation performance for CycleGAN.
CycleGAN trains a data translation model that tries to map the data between the source domain and the target
domain. As the data is translated from the target domain, the translated data is expected to be closer to the source
domain. However, we observe that the translated data are far from both the source-domain and the target-domain
data. Thus, CycleGAN is observed the performance drop on microphone M4 in the KWS case study. Fig. 9e
shows the data translation performance for CDCL. This approach applies the contrastive learning to learn the
feature representation such that the domain distance between the source-domain data and the target-domain
data is minimized. The translated data is expected to be close to the source-domain data. The distance ratio
r for CDCL is 0.4, indicating that the translated data is closer to the source-domain data. Thus, the learned
feature representation can reduce the domain diference to a certain extent. However, CDCL requires substantial
target-domain data in order to train the DNN model. In summary, PhyAug outperforms the competing baselines
in terms of the data translation quality, and it achieves the best results for domain adaptation.
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Fig. 11. Evaluation of the amount of the target-domain data needed for CDCL and FADA.

3.4.2 Amount of target-domain data needed by each approach. In this section, we investigate the amount of
target-domain data needed by each approach in order to achieve satisfactory performance.
CDA, Data calibration and PhyAug use white noise to proile the microphones. They do not require the

target-domain data. In the previous experiments, the microphone proiling uses a 5-minute noise. We conduct
experiments to investigate the impact of shorter noise emission durations on the performance of CDA, Data
calibration and PhyAug. Since they use the same FRC to perform data translation, we focus on the PhyAug on a
speciic microphone, M1. Fig. 10 shows the test accuracy of PhyAug using the M1’s FRCs measured with various
noise emission times. We can see that a noise emission time of ive seconds is suicient. This result shows that
a minimum of 5-second white noise is suicient to proile a microphone. Thus, Data calibration and PhyAug
incur little overhead. CDA is diferent from Data calibration and PhyAug as it requires a heterogeneity generator

to generate augmented training data. The construction of the heterogeneity generator requires 10-minute white
noise from each microphone.
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CDCL, FADA and CycleGAN require both the source-domain and the target-domain data for model training.
We investigate the performance of CDCL and FADA when the amount of used target-domain data varies. The
plot labeled łCDCLž in Fig. 11 shows the CDCL’s test accuracy with respect to the used target-domain data. The
horizontal axis represents the number of the target-domain data samples used per class; the vertical axis shows
the test accuracy. We observe that CDCL’s performance increases when the used target-domain data amount
increases. Its performance stabilizes when the number of used data samples per class in the target domain is
greater than 200, which is around 5% of the available training data. The plot labeled łFADAž in Fig. 11 shows
the FADA’s test accuracy with respect to the used target-domain data. We can see that FADA achieves good
performance with 20 data samples used in each class, which is around 0.5% of the available training data. Despite
that CDCL and FADA only require a small portion of target-domain data to achieve good results. PhyAug is
preferred for model transfer as it only requires a short noise emission time and does not require the target-domain
data.

3.5 Application Considerations

From the above results, PhyAug is desirable for KWS on virtual assistant systems. We envisage that more home IoT
devices (e.g., smart lights and smart kitchen appliances, etc.) will support KWS. To apply PhyAug, the appliance
manufacturer can ofer the microphone proiling function as a mobile app and the model transfer function as
a cloud service. Thus, the end user can use the app to obtain the FRC, transmit it to the cloud, and receive the
customized KWS DNN. As the KWS DNN is not very deep and PhyAug is a one-time efort for each device, the
model retraining in the cloud is an acceptable overhead to trade for better KWS accuracy over the entire device
lifetime.

4 CASE STUDY 2: AUTOMATIC SPEECH RECOGNITION (ASR)

ASR models often have performance degradation after deployments. This section shows the impact of the
microphone on ASR and applies PhyAug to mitigate the impact.

4.1 Impact of Microphone on ASR

We use LibriSpeech [19] as the standard dataset in this case study. It contains approximately 1,000 hours of English
speech corpus sampled at 16 ksps. Each sample is an utterance for four to ive seconds. We use an implementation
[16] of Baidu DeepSpeech2, which is a DNN-based end-to-end ASR system exceeding the accuracy of Amazon
Mechanical Turk human workers on several benchmarks. The used DeepSpeech2 model is pre-trained with
LibriSpeech training dataset and achieves an 8.25% word error rate (WER) on LibriSpeech test dataset. This 8.25%
WER is referred to as oracle WER. Note that the input to DeepSpeech2 is the spectrogram of a LibriSpeech sample,
which is constructed from the Fourier frames using a 20-millisecond window size and 10-millisecond window
shift.
DeepSpeech2 has 11 hidden layers with 86.6 million weights. It is far more complicated than the KWS CNN.

Speciically, DeepSpeech2 is 175 times larger than the KWS CNN in terms of the weight amount. All the existing
studies (e.g., Mic2Mic [12], MetaSense [5], and CDA [13]) that aimed at addressing domain shift problems in voice
sensing only focused on simple tasks like KWS and did not attempt a sophisticated model such as DeepSpeech2.
We test the performance of the pre-trained DeepSpeech2 on the ive microphones M1 to M5 used in ğ3. We

follow the same test methodology as presented in ğ3.1.2. In Fig. 12, the histograms labeled łunmodiiedž represent
the WERs of the pre-trained DeepSpeech2 on the test samples recorded by the ive microphones. The horizontal
line in the igure represents the oracle WER. We can see that the microphones introduce about 15% to 35% WER
increases. In particular, the two low-end microphones M4 and M5 incur the highest WER increases. This result is
consistent with the intuition. From the above test results, this section investigates whether PhyAug described
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Fig. 12. WERs using various approaches on tested microphones. Compared with the unmodified baseline, PhyAug reduces

WER by 60%, 41%, 37%, 70%, and 42% respectively for the five microphones toward the oracle WER. As CycleGAN gives high

WERs (about 90%), it is not shown.

in ğ3 for KWS is also efective for ASR. Diferent from the KWS CNN that takes MFCC tensors as the input,
DeepSpeech2 takes the spectrograms as the input. Thus, in this case study, PhyAug does not need to convert
spectrograms to MFCC tensors in the data augmentation.

4.2 Performance Evaluation

4.2.1 Comparison with alternative approaches. We use data calibration, CDA [13], and CycleGAN (i.e., essence of
[12]) described in ğ3.3.1 as the baselines. FADA [15] cannot be readily applied to DeepSpeech2, because FADA
requires class labels while DeepSpeech2 performs audio-to-text conversion without the concept of class labels.
Diferently, PhyAug and the three used baselines transform data without needing class labels.
∎ Data calibration: Its results are shown by the histograms labeled łcalibrationž in Fig. 12. Compared with

the unmodiied baseline, this approach reduces some WERs.
∎ PhyAug: Among all tested approaches, PhyAug achieves the lowest WERs for all microphones. Compared

with the unmodiied baseline, PhyAug reduces WER by 60%, 41%, 37%, 70%, and 42%, respectively, for the ive
microphones toward the oracle WER.
∎ CDA [13]: It performs better than the data calibration approach but worse than PhyAug. As PhyAug is

directed by the target microphone’s actual characteristics, it outperforms CDA that is based on the predicted
characteristics that may be inaccurate.
∎CycleGAN:We record a 3.5-hour speech dataset and use it to train a CycleGAN to translate samples captured

by a target microphone to the source domain of LibriSpeech dataset. Unfortunately, DeepSpeech2’s WERs on the
data translated by CycleGAN from the microphones’ samples are higher than 90%. A possible reason is as follows.
Unlike the KWS task studied in Mic2Mic [12] and ğ3 of this paper, which discriminates a few target classes only,
end-to-end ASR is much more complicated. CycleGAN may require much more training samples beyond we use
to achieve good performance.

4.2.2 Impact of various factors on PhyAug. We also evaluate the impact of the following three factors on PhyAug:
the indoor location of the microphone, the distance between the microphone and the sound source, and the
environment type. We evaluate the impact of the following three factors on PhyAug: the indoor location of the
microphone, the distance between the microphone and the sound source, and the environment type. We adopt
an evaluation methodology as follows. When we evaluate the impact of a factor, the remaining two factors are
ixed. For a certain factor, let X and Y denote two diferent settings of the factor. We use PhyAug(X ,Y ) to denote
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Fig. 13. PhyAug’s in situ performance and location sensitivity evaluated at three spots in a 7 × 4m2 meeting room.
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Fig. 14. CDA’s in situ performance and location sensitivity evaluated at three spots in a 7 × 4m2 meeting room.

the experiment in which the microphone proiling is performed under the setting X and then the transferred
model is tested under the setting Y . Thus, PhyAug(X ,X ) evaluates in situ performance; PhyAug(X ,Y ) evaluates
the sensitivity to the factor.
∎ Impact of microphone location: Microphones at diferent locations of an indoor space may be subject to

diferent acoustic reverberation efects. We set up experiments at three spots, namely, A, B, and C, in a 7 × 4m2

meeting room. Spot B is located at the room center; Spots A and C are located at two sides of B, about 1m apart
from B along the room’s long dimension. Fig. 13 shows the results of the unmodiied baseline approach tested
at three spots, as well as PhyAug’s in situ performance and location sensitivity. PhyAug’s in situ WERs (i.e.,
PhyAug(A, A), PhyAug(B, B), PhyAug(C, C)) are consistently lower than those of the unmodiied baseline. The
WERs of PhyAug(A, B) and PhyAug(A, C) are slightly higher than PhyAug(B, B) and PhyAug(C, C), respectively.

Similarly, we evaluate the impact of the microphone locations on CDA and Data calibration approaches. Fig. 14
and Fig. 15 show the results of CDA and Data calibration, respectively. Similar to PhyAug, we observe that the
WERs are consistently lower than the unmodiied results at three tested locations for both approaches, and the
WERs of (A, B) and (A, C) are slightly higher than (B, B) and (C, C). These results show that location afects the
performance of a certain ASR model transferred by all evaluated approaches, but not much. Thus, CDA and Data
calibration also exhibit similar robustness trends as PhyAug.
∎ Impact of microphone-speaker distance: The distance afects the signal-to-noise ratio (SNR) received by

the microphone and thus ASR performance. With the setup at the aforementioned Spot C, we vary the distance
between the microphones and the iPhone 7 used to play test samples to be 75 cm, 45 cm, and 15 cm (referred to as
D1, D2, and D3). Fig. 16 shows the results. The unmodiied baseline’s WERs become lower when the microphone-
speaker distance is shorter, due to the increased SNR. PhyAug’s in situWERs (i.e., PhyAug(D1,D1), PhyAug(D2,D2),
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Fig. 16. PhyAug’s in situ performance and microphone-speaker distance sensitivity evaluated with three distances.

and PhyAug(D3,D3)) are consistently lower than those of the unmodiied baseline. The performance gain is
better exhibited when the distances are longer. This suggests that in situ PhyAug improves the resilience of
DeepSpeech2 against weak signals. In most cases, the WERs of PhyAug(D1,D2) and PhyAug(D1,D3) are slightly
higher than those of PhyAug(D2,D2) and PhyAug(D3,D3), respectively. This shows that the microphone-speaker
distance afects the performance of a certain model transferred by PhyAug, but not much. Thus, PhyAug for
DeepSpeech2 is insensitive to the microphone-speaker distance.
Another related factor is the speaker’s azimuth with respect to the microphone that can afect the quality

of the recorded signal due to the microphone’s polar-pattern characteristic. For a certain microphone, the
diferent azimuths of the speaker create multiple target domains. If the speaker’s azimuth can be sensed (e.g.,
by a microphone array), PhyAug can be applied. However, as the ive microphones used in this paper lacks
speaker azimuth sensing capability, we skip the application of PhyAug to address the domain shifts caused by the
speaker’s azimuth.
∎ Impact of environment: Diferent types of environments in general have distinct acoustic reverberation

proiles, which may afect the microphone’s signal reception. We deploy our experiment setup in three distinct
types of environments: a small tutorial room (T), a large lecture theatre (L), and an outdoor open area (O). Fig. 17
shows the results. The unmodiied baseline approach has similar results in T and L. Its WERs become higher in O,
because O has a higher level of background noise. PhyAug’s in situ WERs in T, i.e., PhyAug(T,T), are consistently
lower than those of the unmodiied baseline. PhyAug(L,L) and PhyAug(O,O) reduce WERs compared with the
unmodiied baseline, except for the low-quality microphone M5. As M5 has higher noise levels, the microphone
proiling process may not generate idelity FRCs for M5, leading to increased WERs. As shown in Figs. 17b and
17c, the WERs of PhyAug(T,L) and PhyAug(T,O) are higher than those of the unmodiied baseline. The above
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Fig. 17. PhyAug’s in situ performance and environment sensitivity evaluated in three types of environment, namely, small

tutorial room (T), large lecture theater (L), and outdoor open area (O).

results show that PhyAug for DeepSpeech2 may have degraded performance on low-quality microphones. In
addition, PhyAug for DeepSpeech2 is sensitive to various environments.

4.3 Application Considerations

From results presented in ğ4.2, PhyAug suits ASR systems deployed at ixed locations, such as residential and
in-car voice assistance systems, as well as minutes transcription systems installed in meeting rooms. PhyAug
can also be applied to the ad hoc deployment of ASR and automatic language translation for a multilingual
environment.

5 CASE STUDY 3: ACOUSTICS-BASED ROOM RECOGNITION (ARR)

Smartphone indoor localization without using extra sensors and infrastructure is desirable. Recent studies exploit
the smartphone’s built-in audio system for infrastructure-free room-level indoor localization [25, 28]. Speciically,
they use a smartphone to sense a room’s acoustic background spectrogram (ABS) [28] or the room’s reverberation
in response to a probe sound emitted by the smartphone [25]. They follow supervised learning to train a model
using labeled data samples collected from multiple rooms. Then, the smartphone with the model can recognize
which room it is located in using the ABS or room reverberation sensed by the smartphone. Diferent from the
previous two case studies (KWS, ASR) that aim at interpreting the voices, ARR uses acoustic signals to sense
the environment. Since ARR uses a smartphone microphone as the sensor, presumably, its performance can be
afected by the heterogeneity of the smartphones’ microphones. Speciically, if the target smartphone deployed
with the trained ARR model is diferent from the smartphones or specialized acoustic devices used to collect the
training data samples, the performance of the ARR model may drop. Conventional data augmentation approaches
[13] may fail to capture such device variability because of a lack of target sensors’ domain knowledge. Data
translation approaches, e.g., mic2mic [12] only address the single device-to-device data translation. In addition, it
requires a translation module installed on each device, hindering the generality of the approach.

In this section, we validate that the main cause of the ARR model performance drop is microphone variability.
To address this issue, we apply PhyAug to recover the performance degradation of the ABS-based ARR model
when being applied on a speciic smartphone. Speciically, we exploit the smartphone’s ABS proile to perform
data translation from a source smartphone to the target smartphone. Then, we apply the transfer learning
technique to obtain a domain-adapted ARR model for the target smartphone.
In this case study, source domain is the dataset collected from the smartphone’s microphone used to train

the ARR model; target domain is the dataset captured from a diferent smartphone; irst principle is the
microphone’s FRC.
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5.1 Problem Description

In this section, we describe the procedures for ABS feature extraction and DNN model used for room recognition.
Then, we measure the impact of smartphone microphone variability on the pre-trained ARR model’s accuracy.
Finally, we apply PhyAug to recover the model accuracy loss and compare PhyAug with baseline approaches.

5.1.1 ABS feature extraction and DNN model design. We follow the acoustic signal preprocessing steps described
in [28] to extract ABS features. An ABS feature is extracted as follows. First, the smartphone records a 1-second
long background sound within a room at a sampling rate of 44.1 kHz. Second, we apply short-time Fourier
transform (STFT) on the signal by sliding a 1,024-point hamming window with 512 points of overlap to obtain
the ABS. Third, we discard the frequencies that are greater than 7kHz and sort the values in each frequency
bin. Lastly, we select the 5th percentile of the sorted values in each frequency bin to form a one-dimensional
vector with 163 elements as the ABS feature. The sorting and selection make sure the feature characterizes the
background sound, rather than transient foreground sound.

Diferent from the ABS-based ARR system in [28] that uses nearest-neighbor classiication, we adopt a 5-layer
MLP model that takes the ABS feature as input to perform room recognition. The number of neurons in the ive
layers are 163, 256, 512, 1024, and N , where N represents the number of rooms. During training, a 0.4 dropout
rate is adopted between any two hidden layers to prevent overitting. We implement the model using Pytorch
[20].

5.1.2 Impact of smartphone microphone variability on ARR. We investigate the impact of the smartphone micro-
phone on a pre-trained ARR model. We use three smartphones of diferent models (Samsung Galaxy S7, Motorola
Moto Z, and Google Pixel 4) to collect 20 rooms’ ABS features. For each room, we collect 10-minute training data
and 2-minute testing data using each smartphone. We train the DNN model with data collected using a speciic
smartphone and then test the trained model with data collected using all smartphones. The results are shown by
the histograms labeled łunmodiiedž in Fig. 18a, 18b, and 18c, respectively. Taking Fig. 18a as an illustration, the
source device used to train the DNN model is Galaxy S7. The oracle accuracy numbers reported in the sub-igure
captions are obtained by training and testing the model on the data collected from the same smartphone, which
are 98% for Galaxy S7 and Pixel 4, and 99% for Moto Z. Thus, the ABS-based ARR can achieve high accuracy
on recognizing diferent rooms if the source and target devices are identical. However, from Fig. 18a, when
applying the model trained on Galaxy S7 to Pixel 4 and Moto Z, the DNN model’s accuracy drops to 17% and 16%,
respectively. Similar substantial accuracy drops can be observed when the source smartphone is Pixel 4 or Moto
Z. These results show that the ABS-based ARR is highly sensitive to smartphone microphone variability.
To visualize the diferences between the acoustic traces collected from diferent smartphones in the same

room, Fig. 18d plots the spectrograms of the phones’ 1-second data traces collected at the same time. It shows
that diferent smartphones record diferent ABSes, which is caused by the microphone heterogeneity. From this
observation, the research question is how to exploit the microphone characteristics to recover the ARR DNN’s
accuracy loss?

5.2 PhyAug for Acoustics-based Room Recognition

Similar to ğ3.2, PhyAug for ARR consists of fast microphone proiling and model transfer via data augmentation.
For fast microphone proiling, we adopt a new approach that is diferent from but related to that in ğ3.2.

Speciically, instead of using a speaker to playback the white noise, we place the smartphone in a proiling

room to record a 1-minute ABS for phone characterization. The proiling room can be diferent from those to
be recognized. We follow the procedure in ğ5.1.1 to obtain the spectrogram over a 1-minute window. Then, we
sort the values in each frequency bin and compute the average of the values from the irst percentile to the 20th
percentile. The resulted averages for all the frequency bins form the smartphone’s ABS proile that is speciic to
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Fig. 18. Impact of smartphone microphone variability on ABS-based ARR and comparison of diferent approaches.

the proiling room. We obtain the ABS proiles of the source smartphone and the target phone, which are denoted
by ABSs(f ) and ABSt (f ), respectively.

Formodel transfer via data augmentation, we transform the source-domain training data into the target domain.

The source-target transfer function isH(f ) ≙ ABSt (f )
ABSs(f )

. Then, we multiply the labeled source-domain ABS features

with H(f ) to generate augmented target-domain ABS features. Finally, we re-train the ARR model with the
augmented data.

5.3 Performance Evaluation

We compare PhyAug with two alternative approaches: data calibration and CDA. The evaluation results are
shown in Fig. 18a, 18b and 18c, which use Galaxy S7, Pixel 4, and Moto Z as the source device, respectively.
∎Data calibration: This approach converts the target domain data back to the source domain, then applies the

pre-trained model to the converted data. The histograms labeled łcalibrationž show the results of this approach.
Compared with the łunmodiiedž results, this approach recovers a certain amount of the accuracy loss for most
source-target phone combinations. However, it leads to lower accuracy when the source and target phones are
Pixel 4 and Moto Z. The accuracy drops from 62% to 60%.
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∎ CDA: We follow the scheme presented in ğ3.3.1 and use target smartphones’ ABS proiles to generate a
heterogeneity dataset. We train a DNN model on this dataset and evaluate on target smartphones. The histograms
labeled łCDAž show the results. Compared with the łunmodiiedž results, we observe considerable accuracy
recoverywhen transferring from Pixel 4 to Galaxy S7 and fromMoto Z to Galaxy S7. However, CDA underperforms
when transferring between Pixel 4 and Moto Z. The reason is as follows. From the łunmodiiedž results, any
source-target pair involving Galaxy S7 has a poor result. For example, the DNN model’s absolute accuracy drops
between Pixel 4 with Moto Z is around 30% - 40%, whereas the accuracy drops between Galaxy S7 with Pixel 4 or
Galaxy S7 with Moto Z are more than 70%. This implies that Galaxy S7’s ABS proile is signiicantly diferent
from those of Pixel 4 and Moto Z. Under the CDA approach, when we transfer between Pixel 4 and Moto Z, the
Galaxy S7 is used as one of the two phones in the heterogeneity dataset. As a result, the heterogeneity dataset
has a complex pattern, which adversely afects the dataset’s representativeness.
∎ PhyAug: PhyAug can recover the accuracy loss for any source-target smartphone pair. In addition, PhyAug

achieves the best performance recovery among all evaluated approaches. Speciically, PhyAug recovers 24%
to 72% absolute accuracy degradations on diferent smartphone pairs. In particular, when the source device is
Galaxy S7, the łunmodiiedž accuracies on Pixel 4 and Moto Z are 17% and 16%. PhyAug can recover 52% and 68%
absolute accuracy losses, outperforming signiicantly over the data calibration and CDA approaches.

5.4 Summary

The DNN-based mobile application generally sufers from performance degradation due to the heterogeneity
of mobile sensors. This case study applies PhyAug to recover the ARR performance loss caused by smartphone
microphone variations. PhyAug only requires smartphones to record 1-minute ABS proiles in a certain room
and achieves signiicant accuracy recovery. This case study shows that PhyAug can be used to address the sensor
heterogeneity issue in DNN-based mobile sensing applications.

6 CASE STUDY 4: FISHEYE IMAGE RECOGNITION

DNN-based visual sensing can be found in many IoT applications, including video surveillance [9], augmented
reality [24], and autonomous driving [7]. Many such applications use isheye cameras. The isheye camera is
diferent from the normal pinhole camera with rectilinear mapping. The isheye camera produces images with a
wide ield of view (FOV) while creating strong distortions due to the non-linear mapping of optical lens systems.

Prevalent image datasets consist of samples obtained using pinhole cameras. Standard DNNs that achieve
state-of-the-art performance are also trained and tested on such pinhole camera datasets [2, 34]. They may not
perform well on the images collected by isheye cameras. Image rectiication is a conventional approach that
applies inverted isheye models to ix distorted images. However, image rectiication has two main limitations [34].
First, as isheye images contain greatly distorted peripheries, mapping the limited pixels from the image periphery
to a larger region leads to information loss. Second, the image rectiication requires additional processing time
for every image before the image classiication. The processing time grows drastically as the image resolution
increases. Thus, the image rectiication approach is not suitable for applications that impose both deadline and
high-resolution requirements, e.g., visual sensing-based pedestrian detection on a moving vehicle.
In this section, we apply PhyAug to recover DNN’s performance degradation caused by isheye camera

distortion without performing image rectiication. First, we utilize a non-linear polynomial model to augment
the original dataset to the images with isheye distortions. Then, we apply a transfer learning technique to obtain
a domain-adapted DNN model for isheye images.

In this case study, source domain is the image dataset that is captured by pinhole cameras and used to train
the DNN; target domain is the isheye camera dataset for speciic IoT applications; irst principle is the isheye
camera model described by a non-linear polynomial function.
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(a) Original (b) Synthesized (c) Rectiied

Fig. 19. Fisheye image sythesization and rectification using parameterized model. (a) original image; (b) synthesized fisheye

image; (c) rectified image.

6.1 Problem Description

In this section, we irst introduce the original dataset captured by pinhole cameras. Then, we describe the camera
model used to generate synthesized isheye images. Finally, we compare the performance of PhyAug, CDA, and
the image rectiication approach.

6.1.1 Fisheye camera model. For a given camera, distortions occur when the scenes deviate from the rectilinear
projection. The most common source of image distortions is the radial distortion caused by the camera optical
lens system. Fisheye cameras produce strong radial distortions on images. Several models have been proposed to
characterize a isheye camera [8]. In this paper, we adopt a generic isheye model [29], which is a fourth-order
polynomial function:

Rsrc ≙ r ⋅ (A ⋅ r 3 + B ⋅ r 2 +C ⋅ r +D) , (1)

where r is the destination image radius and Rsrc is the source pixel. In this model, image radius is normalized,
so that r ≙ 1 refers to the half minimum width or height of the input image. A,B,C represent the distortion of
the image. When the three values are positive, the image contains barrel distortion. When they are negative,
pincushion distortion occurs in the image. D describes the linear scaling of the image. The values of A,B,C,D are
ixed for a given camera and are often stored as metadata of the image captured by a isheye camera.

6.1.2 Dataset and deep neural network model. In this case study, our experiments use Caltech-101 dataset [4]. It
consists of image objects in 101 classes. Each class contains 40 to 800 images, with a total of around 9,000 images.
We split the dataset into training, validation, and testing sets at 70%, 10% and 20% ratio.

We adopt the ResNet-50 CNN model [6] to perform multi-class classiication. ResNet-50 consists of 48 convo-
lutional layers along with one max-pooling and one average-pooling layer. The base model is pre-trained on
the ImageNet dataset [3]. We customize the model by reducing the output layer size from 1,000 neurons to 101
neurons, to align with Caltech-101’s class number. We use freeze-and-train to transfer the pre-trained base model
for Caltech-101 dataset. In particular, we freeze the weights in feature encoders and update the weights in the
fully connected layers. In this case study, we implement the model training and evaluation using PyTorch.

6.1.3 Impact of image distortion on DNN model. We investigate the performance of a DNN model trained on
a standard dataset captured by pinhole cameras and test it on images captured by isheye cameras. Due to the
lack of publicly available isheye image datasets, we use a synthetic dataset for our experiments. We distort the
images using the model depicted in Eq. (1). Fig. 19 shows a sample. Fig. 19(a) is the original image. Fig. 19(b) is
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the corresponding distorted image with a positive parameter set of A ≙ 0.2,B ≙ 0.2,C ≙ 0.01,D ≙ 0.59, where a
strong radial distortion efect can be observed. We apply the same parameters set on Caltech-101 to generate
the synthetic isheye image dataset. The isheye model is implemented using the Wand package [14] in Python.
We test the pre-trained model on both the original and distorted datasets. As shown in Fig. 20, the pre-trained
ResNet-50 model achieves 90% oracle accuracy on the original test set. The accuracy on the distorted dataset is
72%. Thus, there is an 18% absolute accuracy drop. Many isheye cameras can produce images with FOV greater
than 180○, resulting in stronger non-linear distortions. Hence, signiicant accuracy drops can be observed. Based
on the experiment results, the research question for this case study is: how to exploit the irst principle of isheye
camera models to recover the image classiication DNN’s accuracy loss?

6.2 PhyAug for Fisheye Image Recognition

We use a generic isheye model, which is described by a fourth-order polynomial function (cf. Eq. (1)). Note that a
fourth-order polynomial function can well represent the model of isheye cameras, while higher orders provide no
additional beneit in terms of accuracy [34]. A system designer can reconstruct the camera model based on lens
parameters stored in the image’s metadata. In case that the metadata is missing, a standard calibration procedure
can be applied to estimate a camera’s intrinsic parameters [23]. Speciically, the camera can capture photos of a
printed image with a known pattern, e.g., a chessboard, at diferent angles. In general, 20 to 30 pictures from a
isheye camera are suicient to obtain distortion parameters. Such calibration tools are available in OpenCV [17]
and Matlab [23].

PhyAug for FIR has the following two steps. First, we estimate the parameters of Eq. (1) for a speciic isheye
camera and apply the isheye model on the original images to generate augmented samples in the target domain.
Then, we train the DNN model with the augmented data for the isheye camera. In this case study, we assume
that the parameters of the target camera are known.

6.3 Performance Evaluation

6.3.1 Baseline approaches. We evaluate PhyAug performance against following baseline approaches.
∎ CDA: This approach follows the conventional data augmentation scheme to build a DNN model robust to

camera lens distortions. Speciically, it randomly generates a set of potential isheye camera models using Eq. (1).
Subsequently, CDA applies these camera models to augment the training dataset. In our evaluation, we randomly
generate 10 sets of parameters and use them to augment the Caltech-101 training dataset.
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∎ FADA: This approach follows the adversarial domain adaptation as presented in ğ3 to train a domain-
invariant feature encoder using paired source-domain and target-domain images. The feature encoder used is
a ResNet-50 model and the discriminator used is a 4-layer MLP with the neurons in the four layers are 1024,
1024, 1024 and 101. The number of images in each class used for feature encoder training is set to 100 due to the
relatively complex feature space for this case study.
∎ CDCL: This approach aims to train a domain-invariant feature encoder by applying the contrastive learning.

We follow similar procedures as presented in ğ3 to construct the positive and negative samples for training. The
number of images in each class used for contrastive feature training is 400.
∎ Image rectiication: This approach follows the conventional image rectiication scheme to correct image

distortions. Once the camera lens distortion parameters are determined, one can tune the same model as in Eq. (1)
to rectify the image. Fig. 19(c) shows the rectiied result by applying the inverted parameters on the distorted
image. In our evaluation, we apply the estimated parameters to rectify distorted images and then evaluate the
pre-trained model on rectiied images.

6.3.2 Evaluation results. We apply PhyAug and the baseline approaches on the Caltech-101 dataset. The results
are presented as follows:
∎ CDA: As shown in Fig. 20, CDA achieves 79% accuracy on the target isheye dataset. This approach achieves

higher accuracy than the unmodiied result, which directly applies the pre-trained model to the target test data.
However, there is still an 11% accuracy gap towards the oracle accuracy. The result shows that the model trained
with CDA mitigates the impact of isheye camera distortion.
∎ FADA: As shown in Fig. 20, FADA achieves 76% accuracy on the isheye images. It only gives 4% absolute

accuracy gain compared with the unmodiied result. The performance increase is subtle even we increase the
used target-domain images for model training. FADA does not perform well on FIR compared to the KWS. The
reasons are two-fold. First, the data complexity of FIR dataset is higher than KWS dataset. The size of a isheye
image is 3 × 224 × 224, whereas the size of KWS MFCC is 1 × 101 × 40. Second, the model complexity used is
much higher. We use the ResNet-50 model for FIR and use the ResNet-18 for KWS. Thus, it is more diicult to
adapt the DNN for FIR using limited data. We conclude that FADA does not generalize well on the complex tasks
for domain adaptation.
∎ CDCL: As shown in Fig. 20, CDCL achieves 82% test accuracy on the isheye images, representing a 10%

absolute accuracy increase. The result shows that CDCL can efectively learn a feature embedding for both the
source-domain and the target-domain data. However, the performance of CDCL is sensitive to the number of the
target-domain data used for contrastive feature training.
∎ Image Rectiication:We use pre-deined isheye model in Eq. (1) to rectify the isheye image, then apply

the pre-trained model on rectiied images. As shown in Fig. 20, image rectiication achieves 85% test accuracy.
This shows that image rectiication can efectively recover information loss caused by Eq. (1). However, as the
image rectiication algorithm is applied on every image, thus will incur extra computing time. The evaluation of
image rectiication time on a resource-constrained device is presented in the next section.
∎ PhyAug:We apply re-trained model on the distorted image dataset. The test accuracy is 85%. PhyAug can

efectively recover the accuracy loss caused by camera distortions. However, there is still a 5% gap compared
with the oracle test accuracy. This is because of the information loss when applying the isheye camera distortion
model on the original image data. As shown in Fig. 19, the occupied region of the distorted image (b) is smaller
than the original image (a). The gray area in image (b) represents the amount of lost content caused by the
distortion. Therefore, a certain amount of accuracy loss is expected.

We evaluate the execution time of image rectiication and DNN inference on an NVIDIA Jetson Nano that can
execute DNN models. It is equipped with a quad-core Cortex-A57 CPU, a 128 core Maxwell GPU and 4GB RAM.
Results are shown in Fig. 21. The curve labeled łRectifyž is the time taken to rectify an image with respect to the
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image resolution. The horizontal axis represents the length of a squared image in pixels, e.g., point 224 refers to a
224× 224 RGB image. The solid line in Fig. 21 shows that image rectiication requires more processing time when
the resolution increases. It takes around 18ms to rectify an image of size 224 × 224. When processing an image
of 1414 × 1414 pixels, the rectiication time increases up to 688ms. The curve labeled łDNNž is DNN inference
time on images with diferent resolutions. Note that we run image rectiication algorithm on CPU as there is
lack of GPU version. In practice, there will incur overhead to create GPU compilable program for every edge
device. The dotted line in Fig. 21 shows that the inference time is consistent across all tested images, which is
around 36ms. This is because the loating-point operation for a pre-deined neural network is generally ixed and
regardless of input image size. Our experiment shows that ResNet-50 network can work efectively on images
with diferent input sizes. In time-critical applications like autonomous driving, large delays are unacceptable. As
PhyAug directly adapts the DNNmodel to the target domain, it has the advantage of avoiding the time-consuming
rectiication on resource-constrained devices.

6.4 Summary

This case study applies PhyAug to a visual sensing application. Applying DNNs trained using standard pinhole
camera image datasets on isheye images sufers performance degradation. Despite the prevalent use scenarios of
isheye cameras in visual sensing applications, few publicly isheye datasets are available for training customized
DNNs. We identify that the main contributor to the performance drop is the non-linear mapping of the isheye
camera. We apply parameterized isheye model to transfer existing DNNs to a speciic isheye camera via guided
data augmentation. The results show that PhyAug can signiicantly recover the accuracy loss; while requiring no
data collection efort in the target domain of the isheye camera. Our experiment on NVIDIA Jetson Nano shows
that PhyAug requires less computational overhead than the conventional image rectiication approach.

7 DISCUSSIONS

In many sensing systems, the domain shifts are often governed by irst principles. The four case studies have
demonstrated the advantages of exploiting the irst principles in dealing with domain shifts that are often
experienced by deployed sensing systems. In practice, the complexity of the identiied irst principles and the
amount of data available for irst principle itting vary from application to application. The quality of the itted
models afects the performance of the domain adaptation. Though it is desirable to develop the theoretical analysis
to describe how much the itted irst principle can capture the true relations between the source-domain data and
the target-domain data, such analysis will need to be based on certain assumptions that are application-speciic.
Intuitively, the irst principle described with a more complex parametric model will require more data for itting.
The focus of this paper is to establish the steps to exploit the physics governing the domain shifts for domain
adaptation and show its applicability to a number of case studies.
For the applications that lack useful irst principles, we may fall back to the existing physics-regardless

transfer learning approaches. However, the fallback option should not discourage us from being discerning on
the exploitable irst principles in the pursuit of advancing and customizing deep learning-based sensing in the
domain of physics-rich cyber-physical systems.

8 CONCLUSION AND FUTURE WORK

This paper described PhyAug, an eicient data augmentation approach to deal with domain shifts governed by irst
principles. We presented the applications of PhyAug to four case studies of keyword spotting, automatic speech
recognition, acoustics-based room recognition, and isheye image recognition. They have distinct objectives and
require deep models with quite diferent architectures and scales. The extensive and comparative experiments
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show that PhyAug can recover signiicant portions of accuracy losses caused by sensors’ characteristics. In
addition, it reduces target-domain training data sampling complexity in dealing with the domain shifts.
The future work may consider applying PhyAug to exploit the following two parametric models. First, room

impulse response (RIR) describes indoor audio processes. Voice-based smart appliances can exploit RIR as the
irst principle for efective adaptations to the deployment environments. Active acoustic sensing-based indoor
localization with deep learning [25] can exploit RIR to reduce target-domain training data sampling complexity.
Second, computational luid dynamics (CFD) describes the thermal processes in indoor spaces (e.g., data centers).
A trained deep reinforcement learning-based environment condition controller can adapt to new spaces with
CFD models and a few data samples in each new space.
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