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ABSTRACT

An increasing number of environments, such as smart homes and
factories, are being equipped with multiple sensor systems to en-
able diverse intelligent applications. However, most existing sensor
coordination systems require manually predefined rules, limiting
their ability to handle flexible and complex tasks. While recent
approaches leverage large language models (LLMs) to interact with
external APIs, they struggle to fully understand the capabilities and
data dependencies of practical sensor systems. This paper intro-
duces TaskSense, a novel system that coordinates multiple sensor
systems in response to users’ complex queries. TaskSense intro-
duces a sensor language that automatically translates the capabili-
ties and data dependencies of sensor systems into vocabularies and
grammar rules that can be understood by LLMs. It then interprets
user intentions into executable task plans for sensor systems us-
ing this sensor language in combination with LLMs. Meanwhile,
TaskSense checks the solvability of user queries and verifies the cor-
rectness of task plan dependencies. To further enhance robustness,
TaskSense incorporates a dynamic plan execution mechanism that
adjusts plans based on real-time feedback from sensor data avail-
ability, data quality and execution results. TaskSense is deployed
on real-world smart home systems, utilizing six popular LLMs. The
system is evaluated across 4 scenarios involving 9 types of sensor
systems, over 60 APIs, 170 tasks and 5 types of data modalities.
Results show that TaskSense achieves up to 2Xx higher planning
accuracy and a 75% increase in answer accuracy using the similar
amount of tokens compared with baseline approaches.
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Figure 1: An example scenario of the TaskSense system. It can
handle users’ complicated queries by coordinating multiple
sensor systems.
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1 INTRODUCTION

Sensor systems have been widely deployed in various aspects of
human life, enabling diverse intelligent applications and tasks such
as healthcare and industrial logistics [40, 63]. The market size of
sensor systems is forecasted to grow to US$55.2 billion by 2030 [2].
Multiple sensor systems are increasingly deployed and coexist in
the same environment to support diverse intelligent applications.
Most existing sensor systems are designed for specialized tasks,
with their functions remaining fixed after deployment [50, 61, 63].
Recently, open-source ecosystems like Home Assistant [9] have
become mature, integrating with over a thousand different devices
and services. These ecosystems have led to a vision that it is possible
to control heterogeneous smart devices from different manufactur-
ers to handle complicated tasks. However, those ecosystems can
only support fixed coordination rules, like the automation scripts in
HomeAssistant platform, that are manually defined by the human
efforts in advance. Thus, these systems are not scalable to handle
flexible and complex tasks due to too many potential combinations
of smart devices.

Recently, Large Language Models (LLMs)-based studies, such
as HuggingGPT [49] and ControlLLM [35], have demonstrated
that LLMs can understand users’ inquires and coordinate multiple
Al models for complex tasks. Acting as central controllers, LLMs
have the potential to orchestrate heterogeneous sensor systems,
overcoming the limitations of traditional AI models restricted to
single, predefined tasks. Based on their powerful comprehension
capabilities, LLMs can understand flexible and complex queries
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expressed in natural language, generate correct plans based on
the user’s intention, and translate the plan execution results into
user-friendly responses. However, existing LLM-based coordina-
tion solutions only work with Al models or algorithms, but they
struggle to coordinate real sensor systems. Lacking knowledge of the
capability of real-world sensor systems and data dependencies among
their functional modules, existing methods fail to accurately judge the
solvability of user query and coordinate sensor systems in a correct
manner. They also have difficulty maintaining stable performance
under the uncertainty factors of real-world environments. Figure 1
illustrates an example scenario where a home is equipped with a
video surveillance system and a smart speaker. The user sends a
query to monitor the potential abnormal status of a baby at home.
The sensor systems should alert the user if the baby cries when the
falling is detected. Such queries require diverse combinations of
sensor systems and are highly dynamic. Other examples include,
“Was there anyone in the room yesterday?” and “Where are my keys?”.

To address this research gap, this paper explores the design of an
LLM-powered system that coordinates one or more sensor systems
by fully understanding their capabilities and the dependencies be-
tween the tools involved. The tool in this paper refers to a module
with a specific functionality within a sensor system, such as data
processing and sensor control. However, designing such a tasking
system presents several challenges. First, once the sensor systems
are deployed, the coordination system must be able to compre-
hend the diverse functionalities of the tools. These may include
specialized Al models, database operations, sensor controls, or data
transmission. Understanding the capability limits of each tool, as
well as their complex interdependencies, poses a significant chal-
lenge for LLMs. For instance, a surveillance camera system might
detect unusual behaviors but may not have the ability to identify
individuals. Meanwhile, a facial recognition tool might only accept
cropped face images as input, rather than full images captured di-
rectly by the sensor. Second, changes in real-world environments
can significantly affect data quality and availability, potentially
causing coordination failures. It is difficult for the coordination
system to automatically generate alternative plans by swapping
tools dynamically at runtime to complete the same task.

In this paper, we introduce TaskSense, a translation-based ap-
proach that enables LLMs to interact with sensor systems using
a specialized framework called sensor language. As illustrated in
Figure 1, we first develop a novel sensor language to help LLMs
comprehend the capabilities and data dependencies of sensor sys-
tems. Once these systems are deployed, our approach automatically
translates their functionalities into vocabularies and grammar that
LLMs can understand. When a user submits a query, TaskSense first
assesses its solvability through a solvability check, and then inter-
prets the user’s intent based on the sensor language and translates
it into an executable plan that sensor systems can carry out. Next,
TaskSense performs a grammar check to detect any dependency
errors of the plan. During execution, TaskSense employs a dynamic
plan adaptation mechanism, adjusting the plan in runtime based
on feedback from sensor data quality, data availability, and execu-
tion outcomes. This allows the system to maintain high accuracy
and adaptability in real-world environments. Finally, TaskSense

214

K. Liu, B. Yang, L. Xu, Y. Guo, G. Xing, X. Shuai, X. Ren, X. Jiang, Z. Yan

translates the sensor systems’ outputs back into natural language,

providing a clear response to the user.

We summarize the contributions of this work as follows:

+ We develop TaskSense, the first translation-like approach that
enables LLMs to coordinate heterogeneous sensor systems to
complete complex tasks in user queries.

« We propose a novel sensor language that defines vocabulary sets
and grammar that enable LLMs to understand the capability
boundaries and interrelationships of functional modules in sensor
systems. This helps TaskSense automatically generate executable
plans to coordinate sensor systems and ensure task solvability
and data dependency.
We design a dynamic plan adaptation mechanism for sensor sys-
tem coordination to address environmental uncertainty in run-
time. It allows TaskSense to dynamically adjust the plan execution
path based on sensor failure, data quality, and execution results.
We implement TaskSense on 4 datasets, covering 9 sensor systems,
over 60 APIs, 170 tasks and 5 types of data modalities. Evalua-
tion results show that TaskSense can achieve up to 3 times the
planning accuracy and 1.75 times the responding accuracy using
the similar amount of tokens compared with the state-of-the-art
solutions.

2 RELATED WORK
2.1 Tasking Sensor Systems

Various smart sensor systems have been integrated into our daily
lives [11, 60, 66]. Traditional sensor systems rely on rule-based
task execution strategies. ADmarker [39] combines diverse sensors
and Al models in elders’ homes to detect early Alzheimer’s Dis-
ease. Kratos+ [51] uses a policy negotiation algorithm to manage
multiple sensors, handling various user requests without conflicts.
However, these solutions are limited to predefined and fixed tasks
and cannot adapt to dynamic user requirements. Recent works uti-
lize LLMs to solve complex tasks in embedded systems. Works in
[14, 48] use LLMs to assign tasks to AI modules and IoT devices,
meeting diverse user requirements. Sasha [25] employs LLMs to
manage home devices and generate action plans in response to
open-ended instructions. However, these solutions do not consider
environmental uncertainties when tasking sensor systems, limiting
their robustness in real-world applications.

2.2 LLM for Task Planning

LLM Agents. Some works propose using LLMs as the decision cen-
ter to call external tools for solving complex tasks. ToolFormer [45]
shows LLMs can learn to use the API of external tools to generate
more reliable answers. HuggingGPT [49] and TaskMatrix.Al [33]
use LLMs as a controller to propose task solution plans and then
select the corresponding tools for each step. To find the best choice
from all possible plans, ToolLLM [44] and ControlLLM [35] adopt
tree-based and graph-based methods, respectively, for optimal plan
searching. However, these systems only focus on calling general
tools like the calculator, Wikipedia, and Al models designed for
specialized tasks, without considering the complex environments
and data dependencies in practical sensor systems.

Improving the Quality of LLM Planning. Self-check [36] uses
an additional LLM as a validator to recognize errors in its own
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step-by-step reasoning process. ToolLLM [44] and KwaiAgents [42]
improve LLM’s planning ability by fine-tuning it on a high-quality
instruction dataset. In addition, many studies employ feedback-
based strategies to improve plan quality. TaskMatrix.AI [33] and
Sasha [25] use feedback from users to improve the plan quality of
LLMs. Other studies also employ error messages as feedback to
enhance plan quality. Voyager [58] and LLMind [14] use program
execution errors as feedback to improve the plan quality of LLMs.
Some works also attempt to augment LLMs with observations from
objective environments [68, 70]. However, these methods either
require additional validators for evaluation or rely on execution
errors and human feedback to improve the plan quality, without
fully utilizing the information from the sensor systems.

2.3 LLM:s for Open-ended Question Answering
in Sensor Systems

Adapting Sensor Data to LLM Embedding Space. M4 [69] and
OneLLM [21] use a large amount of multi-modal sensor data to
train adapters. These adapters can map raw sensor data into the
embedding space of an LLM, enabling open-ended question answer-
ing based on sensor data. However, adapting diverse sensor data
modalities into the embedding space of natural language requires a
large amount of training data and is difficult to achieve, especially
for complex and information-sparse modalities like IMU.
Retrieval and Summarizing. Many works explore LLMs’ capabil-
ities in sensor data reasoning within embedded systems [41, 62, 64].
LLMTrack [67] uses Chain-of-Thought [27] prompting to analyze
IMU data for trajectory recognition, while LLMSense [41] uses
LLMs for high-level reasoning on daily activity logs from human ac-
tivity recognition models. In addition, some studies utilize retrieval-
augmented generation (RAG) techniques [23, 62] to access exter-
nal knowledge bases such as patients’ daily wearable data [65].
However, these systems face two major limitations: some require
continuous execution of various task-specific models to update the
data log, posing significant challenges in terms of computational
resources and flexibility, while others focus primarily on sensor
data understanding and reasoning, neglecting a broader range of
task types.

3 MOTIVATION

This section examines current methods for tasking sensor systems,
involving three steps: generating a tool calling plan based on user
queries, executing the plan, and delivering a response from the
execution results. Insights from measurement studies on existing
approaches and our real-world testbed shape our design goals.

3.1 Planning from Queries

To understand the capability of existing sensor systems in handling
real-world user queries, we use a query set to test the state-of-the-
art (SOTA) approach, HuggingGPT [49], within a home elderly
care scenario. In this scenario, multiple sensor systems, including
a home surveillance system, deep action recognition system and
sound detection system, are deployed in an elderly person’s home
to monitor and record their daily activities. We use HuggingGPT to
understand clinical queries derived from MDS-UPDRS [20] about
human activities and emotions and then generate tool-calling plans.
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Figure 2:

We construct 38 elderly care queries in total. Given 19 tools from 3
different sensor systems, LLMs need to select from these tools to
form a plan for each query.

Figure 2 shows the distribution of errors made by GPT-4 [5] and
GPT-3.5 [29], which are mainly from the following aspects:

1. Misjudging Solvability: Current approaches often fail to recog-
nize the capability limitation of the toolset and identify queries
that exceed its capabilities. User queries that exceed the toolset’s
capacity usually happen in two cases. First, the toolset may lack
a specific function needed for the query. For example, with a
query like “Summarize Bob’s blood glucose”, if the toolset lacks
a blood glucose monitoring tool, the system cannot handle it.
Second, even if the toolset includes relevant tools, their label
setting may not cover the target of the query, such as a HAR tool
that includes labels of “Sitting" and “Dancing” but not “Playing
Chess". In these cases, instead of generating a misleading plan,
the system should notify the user that it cannot fulfill the query.
However, accurately understanding the solvability of each query
is challenging, as the toolset’s capability boundary is complex.

2. Wrong Plan: Another major error type involves generated
plans that contain incorrect dependencies or tools. Each tool has
specific functionalities and distinct input-output requirements,
meaning data dependencies between tools are constrained. LLMs
may produce infeasible plans by introducing incorrect depen-
dencies. For example, a facial expression recognition tool, which
requires face images as input, can only follow a face detection
tool in the plan. If it follows a facial emotion recognition or
speaker diarization tool, which does not output detected faces,
the execution results will be incorrect. Aside from dependency
issues, the generated plans may include incorrect tools. These er-
rors occur when LLMs select inappropriate tools from the toolset
or generate non-existent tools. For instance, the generated plan
for a query about sleep quality might incorrectly include a fall
detection tool.

The highest proportion of errors in Figure 2 is due to the models’
failure to accurately recognize queries that exceed the toolset’s ca-
pability boundary. Incorrect dependencies result from the models’
difficulty in determining valid dependencies between tools. Besides,
wrong tool selection often results from models’ challenges in under-
standing diverse query expression styles. These limitations cause
existing methods to struggle to generate high-quality plans.

3.2 Plan Execution and Responding

After developing the execution plan, TaskSense should execute it
and respond to the user query. To understand the execution quality
of the plan in real-world environments, we conducted experiments
in a smart home scenario using the framework of HuggingGPT [49].
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Figure 3: An illustration about environmental impacts on
sensor systems. While the LLM planner creates a plan based
on user queries, factors such as sensor noise and occlusion
can affect the execution results.

We analyzed the execution of plans based on user queries, consid-
ering environmental uncertainties that may affect the outcome.
In this experiment, we separately execute three different plans
on three different sensor systems for the same user query: “Was
Bob overworking today without adequate bathroom breaks?”. Fig-
ure 3 demonstrates several periods of the plan execution results.
The results show that each plan performs differently when the
environment changes. For example, the plan executed on the RGB
camera-based home surveillance system fails to produce correct
results in the latter two periods due to poor lighting conditions and
occlusion. Similarly, the plans executed on the deep action recogni-
tion system and sanitary monitoring system do not yield accurate
outcomes in the last and first two time periods, respectively, due
to occlusion and the subject being out of frame. This demonstrates
that although the plan is correct, its execution is highly suscepti-
ble to environmental factors. Moreover, the environmental factors
vary significantly across different plan execution paths. However,
we notice that although some of these systems fail to detect the
target in certain time periods, it can still be completed by others,
demonstrating a high degree of complementarity among the differ-
ent sensor systems. Our study highlights three primary types of
environmental factors that affect plan execution:

1. Data Missing: Tool execution within a plan often requires sen-
sor data input. If a sensor fails due to hardware failure or is
accidentally turned off, the required data may not be recorded,
leading to failures in the execution.

2. Data Noise: Factors like changing light conditions that affect
RGB cameras, or noise levels that affect speech capture, can
reduce the quality of sensor data. Data noise introduces errors
in the plan execution results.

3. Content-Related Issues: Issues like objects moving out of the
camera frame, occlusions, or individuals in challenging poses
cannot be detected by assessing data noise levels alone, but they
can also significantly impact the accuracy of results.

These observations indicate the challenges faced by current ap-
proaches in handling dynamic environmental factors in real-world
settings. To address these issues, leveraging the complementarity
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between different sensors can be a promising strategy. For instance,
while light conditions may affect the performance of the generated
plans using RGB camera-based tools, they have minimal impact on
the plans using depth camera-based tools. Besides, with multiple
human detection sensors placed at various locations and angles in
a home, detection results can be guaranteed by switching between
plans using different sensors based on the user’s location. Therefore,
adaptively switching between different plan execution paths can
mitigate the impact of environmental uncertainties and enhance
the system’s overall robustness.

Furthermore, after plan execution, existing approaches also face
challenges during the response generation phase. Multiple sensor
systems can produce substantial result data in the execution. How-
ever, processing extensive data sequences and performing complex
computations pose challenges for LLMs to produce responses to
the user [72], causing forgetting issues or hallucinations like wrong
data association among tools. To understand this issue, we con-
structed 30 test queries and use GPT-4 to comprehend the plan
execution results to generate the answer for each query. Among the
test set, there are 5 failed cases due to the incorrect results associa-
tion among different tools and 3 cases presenting incomprehensive
answers. Therefore, it is necessary to implement strategies ensuring
the accuracy of the generated answers to address the limitations
associated with LLMs.

4 SYSTEM OVERVIEW

In this paper, we introduce sensor language and propose a het-
erogeneous sensor system tasking approach, TaskSense, which
leverages LLMs to coordinate sensor systems for understanding
and responding to user queries in dynamic environments. Figure 4
overviews the design of TaskSense. TaskSense first employs an
LLM-based sensor system automatic registration approach (§5.1)
to initialize the vocabulary set, grammar, and seed examples, re-
ducing the manual effort required for system initialization and
updates. When TaskSense receives a query from the user, it first
interprets the user’s intention based on the sensor language and
retrieved examples, translating it into executable tool-calling plans
to coordinate sensor systems (§ 5.2). After the coordination plan
is generated, TaskSense employs a dynamic plan adaptation mech-
anism (§5.3) to further adjust the plan execution path in runtime,
ensuring they adapt to environmental changes and robust against
interferences in embedded systems. Finally, TaskSense translates
the sensor language back into natural language feedback based on
the plan execution results(§5.4).

5 DESIGN OF TASKSENSE

This section presents the design details of TaskSense. Section 5.1
introduces the necessary components and their initialization pro-
cess when applying TaskSense into a new scenario, including the
sensor language definition and example library. Section 5.2 and
Section 5.3 illustrate the plan checking and dynamic plan adapta-
tion techniques, respectively. Section 5.4 introduces the response
generation module.
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5.1 Understanding Systems with Sensor
Language
5.1.1 Definition of Sensor Language. In TaskSense, user queries are
inputted in the form of natural language, which cannot be directly
used to execute the tools in sensor systems. To bridge this gap, we
develop a translation-like solution that converts user intentions
into executable tool-calling plans using the LLM, which utilizes
LLM’s impressive ability in language translation tasks [15, 28]. We
conceptualize tools and their dependencies as a language, termed
Sensor Language. In this paradigm, tools are modeled as vocabularies
in the Sensor Language, dependencies are modeled as the grammar,
and plans are like sentences formed by combining vocabularies
following grammatical rules. Sensor Language incorporates two key
definitions: vocabulary set and grammar rules. They are included
in the LLM prompt with the retrieved examples (Section 5.1.2),
enabling the LLM to translate user intents effectively.
Sensor Vocabulary Set. It defines detailed information of all the
tools and the basic elements available for the LLM when creating
executable plans. As shown in Figure 5, for each tool, each vocab-
ulary includes the following items: category (e.g., small Al model,
sensor control), tool name, modalities (e.g., RGB, IMU), devices (e.g.,
VZense DCAM710), functionality description, inputs (e.g., thermal
image), outputs (e.g., label, video), and output label setting (e.g.,
[“sitting”, “running”, ...]).
Sensor Grammar. It defines dependency rules among tools that
each plan should follow. The sensor grammar consists of a set of
directed acyclic graphs (DAGs), where nodes represent tools and
edges represent valid dependencies among tools. When included
as part of the prompt for LLMs, the graphs will be converted into
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text format, consisting of node lists (e.g., [“Face Recognition”, “Face
Detection”, ...]) and edge lists (e.g., [‘Human Detection -> Fall Derec-
tion”, ...]). Each valid plan is a subgraph of the sensor grammar. As
shown in Figure 6, two types of dependencies exist in the sensor
grammar: data dependencies and control dependencies.

Data dependencies define data input-output relationships among
tools, where certain tools require outputs from others as inputs,
thereby constraining executable plans. These dependencies are used
to validate LLM-generated plans (see Section 5.2 for more details).
On the other hand, control dependencies, different from data de-
pendencies, mainly define the potential execution preconditions
for tools. A control dependency between two tools specifies the
conditions under which one tool can execute, which depends on the
other one’s output. For instance, in Figure 6, the Speaker Diariza-
tion tool is triggered only if the RGB Human Detection tool detects
at least one person. Once a generated plan passes data dependency
verification, control dependencies are automatically inserted into
the plan before plan execution.

Sensor vocabulary and grammar are essential for LLMs to trans-
late user queries into executable plans. The vocabulary defines the
toolset’s capability boundary, while the sensor grammar specifies
dependency rules among tools. They will be separately used in
the solvability check (§5.2.1) and grammar check (§5.2.2) modules
to improve planning quality. When applying TaskSense to a new
application scenario, the vocabulary set and grammar need to be
constructed first. Existing solutions, like HuggingGPT [49] and
Sasha [46], require manual efforts to create a toolset. In contrast,
TaskSense achieves automatic initialization. Specifically, TaskSense
first constructs the sensor vocabulary set. The user only needs to
provide the source codes for software tools (e.g., human detection
and activity recognition) and/or a detailed description of the sensor
system’s APIs provided by the manufacturers (e.g., video captur-
ing and human presence). TaskSense specifies the format of the
new vocabulary in the prompt: a list of JSON objects and each
JSON object represents a vocabulary. Each JSON object has the
following keys: “category”, “tool name”, “modality”, “description”,
“input”, “output” and “label setting”. Additionally, TaskSense also
provides 5-6 predefined showcases of vocabulary in JSON form to
help the LLM understand the format. Then, TaskSense sends the
prompt containing the source codes/detailed description of new
tools and the showcases to the LLM to generate vocabularies for
all the new tools. After constructing new vocabularies, TaskSense
starts to construct the new grammar rules. Similarly, it specifies in
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the prompt that the grammar rules should be organized as a list of
strings. Each string contains the names of two tools connected by
an arrow, like “Face Detection -> Face Recognition”, representing
a dependency. TaskSense also includes a list of strings following
this format of grammar rules as the showcase and the vocabularies
of the new tools into the prompt. With the prompt, LLMs generate
grammar rules for the new tools. After that, TaskSense will then
check whether each newly generated grammar rule is valid based
on the inputs and outputs of each pair of tools. Users can also add
or delete new vocabularies or grammar rules manually.

5.1.2  Example Library. Providing only a vocabulary set and gram-
mar rules is insufficient for learning sensor language. In machine
translation, example libraries, known as parallel corpora, are com-
monly used to organize translation examples for training mod-
els [24, 26, 30]. As shown in Table 1, we adapt this approach into an
LLM-based method for Sensor Language, designing each example
as a query-plan pair. Each query-plan pair includes a user query ex-
ample and the corresponding plan to solve it. From these examples,
LLMs learn to break down user queries into tool-calling steps and
organize them as executable plans. The example library serves two
key purposes: (i) helping LLMs accurately understand the capability
boundaries of the toolset to identify unsolvable queries, and (ii)
improving planning robustness to varied styles of user expressions.
To achieve the first goal, TaskSense includes both solvable and
unsolvable examples in the library. For the second, TaskSense cate-
gorizes and samples seed examples, then employs LLMs to expand
them automatically.

Seed Example Categorization. We refer to the initially con-
structed examples as seed examples. The primary purpose of seed
examples is to ensure broad and diverse coverage in the example
library. Given that such diversity is essential for improving instruc-
tion tuning performance [12, 71], we propose expanding seed ex-
amples through categorical sampling. Possible query categories are
organized based on specific applications, and examples are created
for each category. For example, categories “activity”, “cognition”,
“emotion” are organized for home elderly care scenario [39]. Within
each category, seed examples are organized to be as distinct as
possible. Categorization and intra-category diversity enhance the
system’s performance on unseen user queries.

Solvable and Unsolvable Examples. In real-world scenarios, our
system may receive queries beyond the toolset’s capability bound-
ary. The system needs to recognize these unsolvable queries, thus
preventing misleading responses. However, simply creating exam-
ples by category is insufficient for the system to accurately assess
query solvability. To address this, we advance the design of the
example library by creating both solvable and unsolvable exam-
ples for each category. A solvable example includes a processable
query and its corresponding plan, while an unsolvable example
includes an unprocessable query and an empty plan, indicating
that no tool-calling plan is available. This approach significantly
enhances LLMs’ ability to recognize query solvability.

Example Library Augmentation. Users often exhibit various
expression styles, which can affect the accuracy of LLMs’ outputs.
To address this, we propose using LLMs to diversify the expression
styles of queries in the examples. For each seed example, we input
the query to an LLM and instruct it to generate several semantically
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Table 1: Example library in TaskSense.

Type ‘ Query ‘ Planning Result
Activit Did Bob show repeated |{ “query-video-rgb”,.., human-activity-
ctivity action yesterday? recognition-rgb”, “activities” }
. How was Bob’s { “query-video-rgb”,..,‘expression-

Emotion ‘ mood today? ‘ recognition-rgb”, “expressions” }

L Did Bob mention { “query-audio-data”,...,'speaker
ANUALE | his travel yesterday? -recognition”, “speaker ID” }
Unsolv- |Did Bob have a fever or « »

able fatigue this week? {Unsolvable’}

equivalent queries in different styles. Each new query is paired with
the seed example’s plan to create a new example for the library.
Based on the benefit of LLM-based instruction re-writing [32, 59],
this approach can effectively augment the example library.

Similar to the construction of new vocabularies and grammar,
TaskSense also automates the construction of seed examples. It
specifies that the format of examples should be a list of JSON object
pairs. Within each pair of JSON objects, one contains a “role” key
with its value as “user” and a “content” key with its value as a user
query. The “role” key of another JSON object is “assistant” and the
“content” key is the corresponding plan for the user query. This for-
mat demonstration is included in the prompt. Like the construction
of vocabularies and grammar rules, a few predefined showcases
following this format are also included in the prompt by TaskSense.
The vocabularies and grammar rules of the new tools generated in
the previous steps are included, too. Then, the prompt will be sent
to LLMs to generate seed examples for the new tools. This process is
performed separately for each seed example class. After generating
all new seed examples, TaskSense instructs LLMs to discard invalid
or overly similar examples and then performs grammar checking
for the rest. It then calculates pairwise semantic similarities among
the rest of the examples, and provides ranking based on the sim-
ilarities as a reference for users to remove redundant examples
manually by specifying their IDs.

5.2 Plan Generation

Upon receiving a user query, TaskSense employs a text encoder
to generate an embedding of it, which is used to retrieve the most
similar examples from the example library based on cosine simi-
larity. TaskSense precomputes and stores embeddings of example
queries to reduce the system’s latency of each retrieval. To ensure
the diversity of retrieved examples, TaskSense retrieves examples
evenly across each category. This category-based retrieval strategy
enhances diversity among examples, improving the system’s gen-
eralization by avoiding excessive similarity among the examples.
These examples are then combined with the sensor vocabulary,
grammar, and user query for plan generation using LLMs. However,
plans generated by LLMs may contain errors, such as misjudging the
solvability of user queries and incorrect dependencies. TaskSense
adopts two key modules to solve these issues: solvability checking
and grammar checking.
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Figure 7: The workflow of dynamic plan adaptation.

5.2.1 Solvability Checking. Some queries are unsolvable because
their target labels (e.g., activities, emotions, or events) fall out-
side the toolset’s capability boundary. To handle these unsolvable
queries, apart from including unsolvable examples in the example
library, we also develop an LLM-based checker to assess queries’
solvability based on the toolset’s capability limits. Before assessing
the solvability, the checker first identifies whether a query is an
open-ended query, which refers to those ambiguous queries that do
not restrict the response to specific labels, allowing any reasonable
response. (e.g., “‘How do you feel about Alice’s exercise routine on
Nov 14?”). Open-ended queries will be skipped for further solvabil-
ity analysis. For queries with specific target labels (e.g., “When did
Bob lie on the bed on Nov 13, 2023?”), the checker assesses solv-
ability based on the toolset’s capability. It checks if the toolset has
the necessary tools for the target functions and, if available, checks
whether their label lists include the target labels. Queries targeting
labels beyond the toolset’s capabilities are marked as unsolvable,
and no plans are generated, while the rest pass the check.

5.2.2  Grammar Checking. To identify dependency errors in gener-
ated plans, TaskSense uses subgraph matching to verify grammar
correctness. TaskSense first converts grammar rules into a directed
acyclic graph (DAG) that contains all valid tools and dependencies.
The plan is also represented as a DAG, with each node correspond-
ing to a distinct tool. TaskSense then checks if the plan’s DAG
is a subgraph of the DAG representing the grammar rules. This
method not only identifies incorrect dependencies but also flags
any mistakenly generated tools not in the predefined toolset.

5.3 Runtime Plan Adaptation

Various dynamics of real-world environments, such as lighting
and obstructions, can degrade tool performance. As shown in Sec-
tion 3.1, static plan execution is vulnerable to such environmental
factors. However, the vocabulary set often contains tools with simi-
lar functionalities, such as Facial Expression Recognition and Speech
Emotion Classification. Due to this redundancy, multiple feasible
plans may exist for the same user query, utilizing different sensor
modalities or devices deployed in different locations. Inspired by
this, we propose a plan adaptation approach that enables TaskSense
to identify replaceable parts of a plan and dynamically select the
optimal execution path among alternatives with similar functional-
ities, based on the runtime quality of sensor data and the outputs
of each path. Figure 7 shows the workflow of the dynamic plan
adaptation, which is described as follows.
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5.3.1 Replaceable Parts Recognition and Alternative Group Match-
ing. First, TaskSense utilizes LLMs to categorize tools in the toolbox
by function, grouping similar ones. Then, TaskSense replaces each
tool in each group with a plan ending with it by adding the minimal
necessary tools it depends on. Such a plan with no redundant tools
is called alternative path. If multiple alternative paths end with the
same tool, they are included in the same group as different paths.
All these groups will be gathered together, and we call each group
an adaptable group and call the group collection pool of adaptable
groups. At runtime, when a plan is generated, TaskSense traverses
the pool of adaptable groups to find groups containing paths that
are subgraphs of the generated plan. The matched group is selected
as the adaptable group for the corresponding path in the generated
plan, as the paths in this group are functionally equivalent to it. If
multiple groups match, TaskSense selects the one with the longest
path. TaskSense then removes the matched part from the original
plan and repeats the process until no more adaptable groups are
found. This process converts the LLM-generated plan into a set of
adaptable groups and irreplaceable parts.

5.3.2  Pre-execution Filtering. During execution, various real-world
factors can affect the availability and quality of sensor data. To
select the appropriate paths at runtime, we apply pre-execution
filtering before executing each group, considering both data avail-
ability and quality. Specifically, for each group with alternative
paths, TaskSense first divides the sensor data’s time range into
equal intervals, e.g., one hour. Then, for each interval, TaskSense
examines each alternative path to check if its required sensor data
is missing and to assess data quality. If the data is missing or has
a significantly low signal-to-noise ratio, that alternative path is
skipped for the interval.

5.3.3 Post-execution Selection. Some factors that induce uncer-
tainty cannot be identified by examining missing data or assessing
data quality, yet they affect execution results. For example, the
occlusion and limited field of view can cause target detection at
one location to fail, but other similar tools may work. To address
such factors, TaskSense switches to other alternative paths if the
current path yields invalid execution results (e.g., empty results).
This evaluation serves as feedback to dynamically adjust the plan.

Besides, to reduce the latency of plan execution, TaskSense
adopts a cache mechanism. A cache database stores the execu-
tion results of each tool on specific data traces. When executing
each tool in a plan, the system checks the cache database to see if
the output has already been generated.

5.4 Response Generation

Plan execution results are then sent to LLMs for responses gener-
ation. As discussed in Section 3.2, there are two main challenges
for LLMs in understanding the results: 1. The results exceed the
token limits. 2. Generating a response may involve logical under-
standing and calculation, which LLMs handle poorly. To address
these challenges, we propose a formatting method to convert the
execution results to a more readable format. TaskSense uses unique
identifiers (IDs) to represent the outcome items of each tool and
converts the original results to a format that is easily understood
by LLMs.



SenSys ’25, May 6-9, 2025, Irvine, CA, USA

Table 2: Details of datasets.

Datasets Sensor Modality # Tools Eja?xel;‘lles # Queries
In-lab HAR RGB, Depth 6 8 30
DAHLIA RGB, Depth 6 8 30
Synthetic iﬁﬁ;g?ﬂg’ 18 10 50
RGB, Depth, Audio,
Real-world Light, IR, Zigbee, 58 10 60

Humidity, Temperature

Outcome-wise ID. To track correspondence among outcome items
from different tools, TaskSense assigns a long, randomly generated
string as the unique ID to each outcome item of the tools. This ID,
along with the tool’s original outcomes, is passed to the next tool
in the plan as its pre-IDs. As a result, each tool records its input
and output arguments, along with the pre-IDs and IDs. By using
these IDs and pre-IDs, we can construct result trees.

Results Format Conversion. After obtaining execution results
with outcome-wise IDs, we apply the lowest common ancestor
matching algorithm [6] to identify objects and their corresponding
labels like activity, gender, and identification, constructing the result
table. For example, the execution results may contain face and
activity recognition according to the sensor grammar DAG shown
in Figure 6. By identifying the lowest common ancestor for object
detection, we can determine people’s activities and emotions. The
final formatted results are organized in the form of a table.
Response from Formatted Results. Since the table can exceed
LLM token limits and LLMs have limited numerical calculation
capabilities [72], TaskSense extract required information from the
result tables, similar to SQL queries.

6 IMPLEMENTATION AND DATASETS
6.1 System Implementation

The overall architecture of TaskSense consists of an LLM on the
server and multiple tools deployed on the server or edge devices.
Sensor data is collected by edge devices. We utilize APIs from
Microsoft Azure [37], Amazon Bedrock [8] and Poe [43] platforms
to access various LLMs. For the retrieval of examples, we utilize APIs
from the Cohere [7] platform for obtaining text embeddings and
use the Annoy [52] package to select examples based on similarity.

6.2 Datasets

We evaluate TaskSense on four datasets shown in Table 2:

In-lab HAR Dataset!. This dataset for Human Activity Recogni-
tion (HAR) is collected in our lab, including data from 30 partici-
pants performing 30 different behaviors. Three participants are used
for evaluation and others for model training. A Vzense DCAM710
camera system (RGB and Depth) and 6 tools are used in the evalua-
tion.

DAHLIA Dataset [56]. This is an open-source dataset commonly
used for HAR. We utilize data from three individuals for evaluation
and others for model training. This dataset is collected using three

I The data collection and study has been approved by the authors’ IRB.
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Figure 8: Hardware setup of the real-world dataset.

Kinect v2 sensors (RGB and Depth). In the evaluation, we use 6
different tools with the dataset.

Synthetic Dataset. To eliminate the influence of tool accuracy
on the performance of TaskSense, we synthesize a virtual dataset
using LLMs for mock testing. This dataset contains the behaviors
of two individuals over five days by prompting LLMs to generate
tool outputs for each individual in every time interval, reasonably
simulating their daily activities. These simulated outputs are di-
rectly stored in the execution cache. Sensor systems are simulated
with failure conditions according to the virtual environment setup.
We simulate placing 4 different sensor systems in this virtual envi-
ronment and use 18 tools in the evaluation.

Real-world Dataset!'. We collected this dataset in three rooms
with 8 heterogeneous sensor systems, including data from 12 indi-
viduals. Three individuals’ data are used for evaluation. As shown
in Figure 8, Room 1 (Living Room) includes a TP-link TL-IPC44AW
camera system (RGB), a Waveshare USB to Audio module (Audio),
a Xiaomi smart light, and an Aqara temperature sensor. Room 2
(Home Entrance) has a TP-link TL-IPC45AW security camera (RGB)
and an Aqara door sensor (Zigbee). Room 3 (Bedroom) includes
a Xiaomi motion sensor 2s (IR) and a behavior analysis system
using a Vzense DCAM710 camera (RGB and Depth), simulating
monitoring for groups with special needs in a bedroom, such as the
elderly. 58 tools in total are used for this evaluation.

Since the original datasets lack the corresponding queries, we
utilize queries from the real-world surveys and medical question-
naires, including MDS-UPDRS [20], PSQI [10], IPAQ [13], NBI [18],
ZBI-C [53], FAS [47], and IADL [31]. Besides, additional queries are
created to ensure comprehensive testing. In this way, we construct
a specific user query set and toolset for each dataset. For the In-lab
HAR and Dahlia datasets, we simulate environmental factors by
randomly adjusting videos’ brightness and adding Gaussian noise.
Implementation of Tools. We integrate code and documents from
various platforms as input for automatic system component con-
struction in datasets. They include TP-link IPC Control APIs [55],
Home Assistant [9], Vzense DCAM SDK [57], HuggingFace [17],
and FFmpeg [16], as well as public models from GitHub and our
own trained models. To enable the execution module to call the
tools in a unified form, we encapsulate each tool as a function with
standardized input and output formats. Tools in the evaluation
mainly include three types: 1. specific Al models (e.g., Fall Detec-
tion). 2. Database Operation Tools (e.g., Retrieve Sensor Data). 3.
Sensor Control Tools (e.g., Set Light Brightness).
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Figure 9: An end-to-end application.

7 EVALUATION

7.1 Evaluation Metrics and Baselines

7.1.1  Evaluation Metrics. We evaluate the overall performance of
TaskSense from three dimensions.

Planning Accuracy. This metric measures the portion of correct
plans generated by the LLM. The ground truth plan for each query
is manually provided, and a generated plan is correct only if its tool
selection and dependencies exactly match the ground truth. If mul-
tiple valid plans exist for a query, any matching plan is considered
correct. Additionally, to enable a more fine-grained comparison
between plans, we also define another metric Planning Score,

which measures the similarity between generated and ground truth

1 Z 2 PR;-RC;
i=1 PR;+RC;’

collections of endmg nodes (tool callings without subsequent tool

plans: Sgcore = where g; and p; represent the

calling) in the ground truth and generated plans, and RC; = lgf;—,{'}il,
lm 1
PR; = |9|PP1 s gi = {tlgl, tlgz, cens tl-gk}, pi = {tlpl’ tf)z’ T tlpm} By us-

ing Planning Score, we aim to measure both the coverage of tools
in each generated plan relative to the corresponding ground truth
plan and the proportion of correct tools within the generated plan
itself.

Execution Accuracy. We measure the percentage of correct out-
puts for each query and then calculate the average percentage
across all queries to determine execution accuracy.

Response Accuracy. It measures the percentage of user queries
that receive correct answers.

7.1.2  Baselines. We use two approaches with similar problem set-
tings, HuggingGPT [49] and Sasha [46], as baselines. HuggingGPT
uses LLMs to break down complex tasks into sub-tasks. It performs
simple format checks, without considering the solvability of user
queries or the grammar correctness of plans, and does not provide
feedback to improve planning quality. Different from HuggingGPT,
Sasha involves extra steps to prompt LLMs to evaluate the solvabil-
ity of each user query and to improve the quality of the generated
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Table 3: Overall performance of different methods (using
GPT-4 as the base LLM).

Planning  Execution Response

Dataset Methods Accuracy Accuracy Accuracy
HuggingGPT 0.80 0.55 0.47
In-lab Sasha 0.86 0.56 0.50
Ours 0.97 0.75 0.73
HuggingGPT 0.86 0.43 0.50
DAHLIA Sasha 0.76 0.42 0.40
Ours 0.93 0.60 0.70
HuggingGPT 0.66 0.59 0.50
Synthetic Sasha 0.32 0.67 0.48
Ours 0.96 0.72 0.74
HuggingGPT 0.55 0.35 0.55
Real-world Sasha 0.66 0.37 0.62
Ours 0.82 0.64 0.75

plan based on user feedback. To address identification issues in
response generation for the baselines, we apply the same results
formatting approach to them, enabling them to respond effectively.
Besides, for a fair comparison, we provide Sasha with the same
base information used by TaskSense’s dynamic plan adaptation
module, including data missing, data quality and execution results,
for LLM-based plan regeneration.

LLMs. We use six popular LLMs as base models for the baselines
and TaskSense: four commercial models (GPT-4 [5], GPT-40 [3],
Claude-3 [22], and Claude-3.5 [22]), and two open-source models
(Llama-3-70B [54] and Mistral [1]). Commercial ones are accessed
via official APIs, while open-source models are accessed through
AWS Bedrock. We set the temperature of LLMs to zero to mini-
mize output randomness, with other settings left as default unless
specified otherwise.

7.2 An End-to-End Application

To demonstrate TaskSense’s workflow, we set up a prototype in a
smart home environment. We deploy our system onto an NVIDIA
Jetson AGX Orin [38] with 32 GB of GPU memory, connected to
the internet to interact with LLM providers. We establish proof-
of-concept testing with this setup, allowing users to query the
system to acquire daily behavior insights with plans generated by
TaskSense.

Figure 9 illustrates the plan generation, execution, and response
steps based on the query posed by referring to the report of In-
ternational Labor Organization [4]. From 12 p.m. to 4 p.m., the
system dynamically switches between different execution paths for
activity recognition based on environmental factors. For instance,
when light levels drop below the RGB camera’s threshold at 1 p.m.,
TaskSense switches to an alternative execution path using a depth
camera, ensuring accurate behavior detection and correct response.

7.3 Overall Performance

The overall performance of TaskSense is evaluated by comparing
its planning, execution, and response accuracy against baseline
models across four datasets. Additionally, TaskSense’s robustness
is tested by comparing it with the baselines in six different LLM
settings on the In-lab HAR dataset.

Table 3 shows evaluation results across different datasets using
GPT-4, with TaskSense using hyperparameter k = 10 as the num-
ber of selected seed examples. The results indicate that TaskSense
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Table 4: Overall performance on the In-lab dataset using
different LLMs.

LLM Methods Planning  Execution Response
Accuracy Accuracy Accuracy
HuggingGPT 0.83 0.51 0.60
GPT-40 Sasha 0.83 0.47 0.63
Ours 0.97 0.72 0.70
L HuggingGPT 0.87 055 057
Clguies 3 Sasha 0.60 0.23 0.53
P Ours 0.97 0.65 0.77
HuggingGPT 0.73 0.54 0.50
Clg‘;ﬂiis Sasha 0.83 0.48 0.73
Ours 0.93 0.67 0.70
Llama 3 70B HuggingGPT 0.47 0.27 0.37
Instruct Sasha 0.63 0.48 0.37
(Open-source) Ours 0.77 0.54 0.57
. HuggingGPT 0.73 0.58 0.47
Mistral Large
(Open-source) Sasha 0.40 0.18 0.30
Ours 0.97 0.74 0.70

achieves up to 0.64 higher planning accuracy than the baselines.
Most errors from TaskSense are due to solvable queries being
treated as unsolvable, which can be mitigated with more precise
queries. The planning accuracies of HuggingGPT are much lower
than TaskSense because it does not conduct any check on the solv-
ability and plan validity. Besides, the examples in its example li-
brary are randomly given, lacking sufficient diversity. Among its
incorrect test samples, both cases of misjudging solvability and gen-
erating wrong plans account for large proportions. Sasha cannot
achieve reliable planning performance as TaskSense, especially on
the Synthetic dataset. It is because Sasha relies on LLMs for plan
adjustments, but the comprehension abilities of LLMs are limited
and their outputs involve a degree of randomness. Therefore, it is
difficult for LLMs to make effective adjustments to the generated
plans based on the complex feedback information from the external
environment, resulting in incorrect or inaccurate adjustments. In
contrast, the dynamic plan adoption mechanism of TaskSense uses
a predefined module to adapt plans based on external information
more accurately and promptly. With its dynamic plan adoption,
TaskSense outperforms the baselines, improving execution accu-
racy by 0.29 and response accuracy by 0.30. Most of TaskSense’s
execution and response errors result from tool inaccuracies. Be-
sides, tool inaccuracies cause inconsistency between the plan and
execution accuracies for HuggingGPT and Sasha on the Synthetic
dataset, where Sasha generates fewer correct plans but more tools
with superior performance. TaskSense avoids this inconsistency as
it always selects the optimal execution path for each plan.

Table 4 shows the results of TaskSense with five different LLMs.
TaskSense consistently outperforms baselines, indicating its robust-
ness and effectiveness across various LLMs. HuggingGPT tends to
misclassify unsolvable queries as solvable (50% on average), while
TaskSense handles these better with only a 4% error rate. Sasha
struggles with solvable queries, showing a high error rate of 35%,
while TaskSense has a lower error rate (10%). Unlike the baselines,
TaskSense maintains consistent performance across LLMs. With
GPT-4o0, TaskSense performs best with 92.2% planning accuracy
on average. With Claude-35-Sonnet, it handles solvable queries
well but struggles with unsolvable ones. Due to Llama3’s limited
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capabilities, TaskSense performs poorly with it, often confusing
complex queries. The open-source model Mistral Large provides
results comparable to commercial ones.

7.4 Microbenchmark

We examine 4 microbenchmarks: (1) the effect of retrieved seed
example quantity during plan generation, (2) the impact of environ-
mental factors’ interference levels, (3) the comparison with RAG
methods, and (4) the impact of the seed example library size.

7.4.1  Effect of Retrieved Seed Example Quantity. Figure 10 shows
TaskSense’s planning performance as the number of retrieved seed
examples k varies on the In-lab dataset. The results indicate that its
planning accuracy improves as k increases but converges when k
reaches 6, after which more retrieved examples yield insignificant
performance improvement.

7.4.2  Impact of Environmental Interference Levels. To evaluate the
impact of environmental factors’ interference levels, we use data
with tool failures caused by environmental or device issues from the
Synthetic dataset. Figure 11 shows TaskSense’s execution perfor-
mance as the tool failure hours through the day change. The results
indicate that TaskSense with the design of dynamic plan adaptation
effectively handles these changes and failures when the failure rate
remains within a reasonable duration. For example, TaskSense can
use a depth camera as an alternative during 8-hour RGB failures at
night to maintain performance.

7.4.3 Comparison with RAG-based Approaches. TaskSense is fur-
ther evaluated by comparing it with two RAG-based settings. The
first setting, planning example RAG, applies RAG to the examples,
which is developed based on TaskSense by removing grammar and
query solvability checks and keeping only example retrieval dur-
ing planning. The second setting, tool output RAG, applies RAG to
inference results with the setting of continuously running all tools
and storing their outputs in a results database. Under this setting,
the system directly retrieves the corresponding tool execution out-
puts from the results database according to the user queries, while
TaskSense allows users to choose which tools run continuously and
which are invoked only on demand.

We compare our method with planning example RAG in terms of
accuracy (Figure 12) and with tool output RAG in terms of system
load (Figure 13) on the In-lab HAR dataset. The results indicate that
TaskSense achieves up to a 19% higher planning score than planning
example RAG across various numbers of retrieved examples. Besides,
unlike tool output RAG’s fixed computational load (the blue and
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gray curves in Figure 13), the cumulative load of TaskSense ’s
load gradually increases as queries span more time ranges. The
load of tool output RAG with dynamic plan adaptation (the gray
curve) serves as an upper bound for TaskSense. Furthermore, the
comparison between red and green curves indicates that more
continuously running tools in TaskSense introduce a more fixed
system overhead but reduce more response latency.

7.4.4  Impact of the Size of Seed Example Library. To assess the
impact of seed example library size, we conduct experiments by
varying the seed example library scale on the In-lab and Dahlia
datasets. As shown in Figure 14, we consider the default setting of
seed example scale used in §7.3 as ‘1.0°, with ‘0.8’ indicating the
use of 80% of the seed examples. The results show that TaskSense’s
planning performance declines as the seed example scale decreases,
indicating the importance of seed examples to optimize TaskSense’s
planning ability.

7.5 Ablation Study

Plan Generation. Table 5 shows the planning performance of
TaskSense and its variants with module ablations, using GPT-4 as
the base LLM on the Synthetic dataset. The results indicate that all
modules contribute to task planning. Among these modules, the
example library contributes the most to both planning accuracy and
score (0.28 and 0.23, respectively). Moreover, when the negative
examples are removed, our evaluation shows that the planning
accuracy and score drop to 0.92 and 0.95, respectively. The drops
are mainly due to incorrect tool selection, indicating the original
LLM’s limited understanding of the tool capability boundaries.

The creativity of LLMs also impacts the quality of plans. The
above experiments are conducted with a temperature setting of 0.
When the creativity of GPT-4 increases (temperature = 1.5), the
accuracy and score decrease to 0.74 and 0.80, respectively. In these
cases, plan verification becomes helpful as a remedy, improving
accuracy to 0.80 and score to 0.87.
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Table 5: Impact of components on planning performance.

Methods Planning Acc.  Planning Score
w/o Sensor Lang. Instruction 0.88 0.91
w/o Example Library 0.58 0.76
w/o Checking 0.88 0.91
TaskSense 0.96 0.99
[ 20
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Figure 16: Impact of sensor
data time range on laten-
cies during planning and re-
sponding stages.

Figure 15: Impact of cache
module on overall execution
latency.

Dynamic Plan Adaptation. The effectiveness of the plan adapta-
tion design is evaluated on the In-lab dataset. TaskSense with the
dynamic plan policy achieves the highest execution accuracy at
0.82, while methods using fixed plan policies with RGB and depth
modalities achieve lower accuracies of 0.56 and 0.60, respectively.
This demonstrates the effectiveness of dynamic plan adaptation in
enhancing execution accuracy compared to using fixed plan paths.
Results Formatting. The impact of results formatting on response
accuracy is evaluated using the In-lab dataset. With formatting,
response accuracy increases to 73.3%, compared to 66.7% without it.
This shows that results formatting effectively enhances the accuracy
of the system’s responses.

7.6 System Overhead

In this section, we evaluate the system overhead of TaskSense,
including execution latency and the API calling cost of LLMs.

Execution Latency. We evaluate the impact of the cache module
on overall latency using the In-lab dataset. Figure 15 shows that the
cache module significantly reduces the execution latency of the sys-
tem. Across varying numbers of cached tools, the total time drops
from 360 to 31 seconds, driven primarily by the decline in plan exe-
cution time from 342 to 11 seconds. Meanwhile, plan generation and
response generation latencies remain stable, fluctuating between
8-10 seconds and 10-12 seconds, respectively. Besides, Figure 16
shows the planning and response times across different time scales:
6, 12, 18, and 24 hours. The results indicate that as data amount
increases, both planning and response times rise accordingly.

LLM API Calling Cost. We evaluate the LLM API calling cost
of TaskSense on the In-lab dataset. Table 6 shows the detailed
breakdown of the token cost of each component in TaskSense. The
total fixed token count for goal descriptions in the planning and
responding stages of our approach is 745, which is comparable to
HuggingGPT (433) and Sasha (1069). This similarity in fixed token
usage does not result in a significant cost difference. For the variable
parts, TaskSense includes additional components, such as grammar
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Table 6: Breakdown of LLM (GPT-4) token counts.

Stage Module # Avg. Token Used
1. Goal Description 558
. 2. Examples 129/example
Planning 3. Vocabulary Set 137/tool
4. Grammar Rules 11/tool
Responding 1. Goal Description 187

2. Execution Results 63/time interval

and examples, which are not present in HuggingGPT and Sasha.
Specifically, HuggingGPT lacks grammar, while Sasha lacks both
examples and grammar. On average, each additional grammar rule
increases token usage by 11 tokens, and each example adds 129
tokens. Despite these increases, the overall cost of our method does
not rise significantly and remains acceptable, making our system
cost-effective for practical applications.

8 DISCUSSION

Scalability to FM tools. The current toolset only contains task-
specific Al models. Many multi-modal foundation models, such as
LLaVA [34] and ImageBind [19], can perform diverse downstream
tasks with one model. In future work, TaskSense could be enhanced
to support more complex tool dependencies and expanded to in-
tegrate these multi-modal models into the toolset, enabling it to
handle broader tasks.

Dynamic Plan Adaptation Strategy. TaskSense offers strong
compatibility, and its dynamic plan adaptation strategy can be
customized. Currently, TaskSense mainly focuses on the quality
of sensor data and execution results in real-world scenarios using
a strategy combining pre-execution filtering and post-execution
selection. Future work could extend TaskSense for additional needs
by implementing other strategies, such as path selection based on
execution latency for real-time performance or using multimodal
fusion with all available data streams to enhance downstream task
performance [39].

Reducing LLM API calling cost. At present, TaskSense needs to
call LLM APIs for each new query, resulting in unavoidable financial
expenses and time overheads. Future work could introduce a cache
mechanism to avoid frequent API calls for similar queries and a
more compact representation of the plan execution results.

9 CONCLUSION

This paper studies utilizing LLMs to coordinate sensor systems for
complicated user queries. To achieve this goal, this paper proposes a
translation-like approach based on a Sensor Language definition to
interpret human intents to executable plans. To improve execution
robustness, TaskSense adopts a dynamic plan adaptation mecha-
nism, adapting plans based on feedback from environmental factors.
We prototyped TaskSense in an end-to-end application setting and
tested it with four datasets. Evaluation results show that TaskSense
offers up to 3X planning accuracy and 1.75X responding accuracy
compared with baselines.

ACKNOWLEDGEMENT

This paper is supported in part by the National Natural Science
Foundation of China (NSFC) under 62202407 and the Research

224

K. Liu, B. Yang, L. Xu, Y. Guo, G. Xing, X. Shuai, X. Ren, X. Jiang, Z. Yan

Grants Council (RGC) of Hong Kong under GRF 14214022, GRF
14212323 and TRS T43-513/23-N.

REFERENCES

[1] 2023. Mistral Inference. https://github.com/mistralai/mistral-inference,.
[2] 2024. Autonomous & Sensor Technology. https://www.statista.com/outlook/
tmo/artificial-intelligence/autonomous- sensor-technology/worldwide,.
[3] 2024. Hello GPT-4o. https://openai.com/index/hello-gpt-40/,.
[4] 2024. International Labour Organization. https://www.ilo.org/,.
[5] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Floren-
cia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal
Anadkat, et al. 2023. Gpt-4 technical report. arXiv preprint arXiv:2303.08774
(2023).
Alfred V Aho, John E Hopcroft, and Jeffrey D Ullman. 1973. On finding lowest
common ancestors in trees. In Proceedings of the fifth annual ACM symposium on
Theory of computing. 253-265.
Cohere Al 2023. Introduction to Text Embeddings. https://github.com/cohere-
ai/notebooks/blob/main/notebooks/llmu/Introduction_Text_Embeddings.
ipynb?ref=cohere-ai.ghost.io.
Amazon Web Services. 2024. Amazon Bedrock: Build Generative Al Applications
with Foundation Models. https://aws.amazon.com/bedrock/. Accessed: 2024-06-
30.
Home Assistance. 2024. Home Assistance: Awaken Your Home. https://www.
home-assistant.io/.
Daniel ] Buysse, Martica L Hall, Patrick J Strollo, Thomas W Kamarck, Jane
Owens, Laisze Lee, Steven E Reis, and Karen A Matthews. 2008. Relationships
between the Pittsburgh Sleep Quality Index (PSQI), Epworth Sleepiness Scale
(ESS), and clinical/polysomnographic measures in a community sample. Journal
of clinical sleep medicine 4, 6 (2008), 563—-571.
Huimin Chen, Chaojie Gu, Lilin Xu, Rui Tan, Shibo He, and Jiming Chen. 2025.
Listen to your face: a face authentication scheme based on acoustic signals. ACM
Transactions on Sensor Networks 21, 1 (2025), 1-23.
Hao Chen, Yiming Zhang, Qi Zhang, Hantao Yang, Xiaomeng Hu, Xuetao Ma,
Yifan Yanggong, and Junbo Zhao. 2023. Maybe only 0.5% data is needed: A
preliminary exploration of low training data instruction tuning. arXiv preprint
arXiv:2305.09246 (2023).
C Craig, A Marshall, M Sjostrom, A Bauman, P Lee, D Macfarlane, T Lam, and S
Stewart. 2017. International physical activity questionnaire-short form. J Am
Coll Health 65, 7 (2017), 492-501.
Hongwei Cui, Yuyang Du, Qun Yang, Yulin Shao, and Soung Chang Liew. 2023.
Llmind: Orchestrating ai and iot with llms for complex task execution. arXiv
preprint arXiv:2312.09007 (2023).
Ryandito Diandaru, Lucky Susanto, Zilu Tang, Ayu Purwarianti, and Derry
Wijaya. 2024. What Linguistic Features and Languages are Important in LLM
Translation? arXiv preprint arXiv:2402.13917 (2024).
Hugging Face. 2024. FFmpeg: A complete, cross-platform solution to record,
convert and stream audio and video. https://www.ffmpeg.org/.
Hugging Face. 2024. Hugging Face Community. https://huggingface.co/.
Jacopo Galli, D Meucci, Giampiero Salonna, R Anzivino, Valentina Giorgio, M
Trozzi, Stefano Settimi, ML Tropiano, Gaetano Paludetti, and S Bottero. 2020.
Use OF NBI for the assessment of clinical signs of rhino-pharyngo-laryngeal
reflux in pediatric age: Preliminary results. International Journal of Pediatric
Otorhinolaryngology 128 (2020), 109733.
Rohit Girdhar, Alaaeldin El-Nouby, Zhuang Liu, Mannat Singh, Kalyan Vasudev
Alwala, Armand Joulin, and Ishan Misra. 2023. ImageBind: One Embedding Space
To Bind Them All In CVPR.
Christopher G Goetz, Barbara C Tilley, Stephanie R Shaftman, Glenn T Steb-
bins, Stanley Fahn, Pablo Martinez-Martin, Werner Poewe, Cristina Sampaio,
Matthew B Stern, Richard Dodel, et al. 2008. Movement Disorder Society-
sponsored revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS):
scale presentation and clinimetric testing results. Movement disorders: official
Jjournal of the Movement Disorder Society 23, 15 (2008), 2129-2170.
Jiaming Han, Kaixiong Gong, Yiyuan Zhang, Jiaqi Wang, Kaipeng Zhang, Dahua
Lin, Yu Qiao, Peng Gao, and Xiangyu Yue. 2024. Onellm: One framework to
align all modalities with language. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. 26584-26595.
Jussi S Jauhiainen and Agustin Garagorry Guerra. 2024. Evaluating Students’
Open-ended Written Responses with LLMs: Using the RAG Framework for GPT-
3.5, GPT-4, Claude-3, and Mistral-Large. arXiv preprint arXiv:2405.05444 (2024).
Soyeong Jeong, Jinheon Baek, Sukmin Cho, Sung Ju Hwang, and Jong C Park.
2024. Database-Augmented Query Representation for Information Retrieval.
arXiv preprint arXiv:2406.16013 (2024).
Melvin Johnson, Mike Schuster, Quoc V Le, Maxim Krikun, Yonghui Wu, Zhifeng
Chen, Nikhil Thorat, Fernanda Viégas, Martin Wattenberg, Greg Corrado, et al.
2017. Google’s multilingual neural machine translation system: Enabling zero-
shot translation. Transactions of the Association for Computational Linguistics 5

—_
&

[11

(12]

(13

jpory
)

=
o)

[20

[21

[22

[23

[24


https://github.com/mistralai/mistral-inference
https://www.statista.com/outlook/tmo/artificial-intelligence/autonomous-sensor-technology/worldwide
https://www.statista.com/outlook/tmo/artificial-intelligence/autonomous-sensor-technology/worldwide
https://openai.com/index/hello-gpt-4o/
https://www.ilo.org/
https://github.com/cohere-ai/notebooks/blob/main/notebooks/llmu/Introduction_Text_Embeddings.ipynb?ref=cohere-ai.ghost.io
https://github.com/cohere-ai/notebooks/blob/main/notebooks/llmu/Introduction_Text_Embeddings.ipynb?ref=cohere-ai.ghost.io
https://github.com/cohere-ai/notebooks/blob/main/notebooks/llmu/Introduction_Text_Embeddings.ipynb?ref=cohere-ai.ghost.io
https://aws.amazon.com/bedrock/
https://www.home-assistant.io/
https://www.home-assistant.io/
https://www.ffmpeg.org/
https://huggingface.co/

TaskSense: A Translation-like Approach for Tasking Heterogeneous Sensor Systems with LLMs

[25]

[26]
[27]

[28

™
X

[30

[31]

[32

[33]

[34]

[35

[36]

[37]

[38]

[39]

[40]

[41

[42

[43]
[44

[45]

[46

[47

[48]

[49]

[50

(2017), 339-351.

Evan King, Haoxiang Yu, Sangsu Lee, and Christine Julien. 2024. Sasha: creative
goal-oriented reasoning in smart homes with large language models. Proceedings
of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 8, 1 (2024),
1-38.

Philipp Koehn. 2009. Statistical machine translation. Cambridge University Press.
Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke
Iwasawa. 2022. Large language models are zero-shot reasoners. Advances in
neural information processing systems 35 (2022), 22199-22213.

Roman Koshkin, Katsuhito Sudoh, and Satoshi Nakamura. 2024. Transllama:
Llm-based simultaneous translation system. arXiv preprint arXiv:2402.04636
(2024).

Labelbox. 2024. GPT-3.5: Models - OpenAl https://labelbox.com/product/model/
foundry-models/gpt-3-5/. Accessed: 2024-06-30.

Guillaume Lample and Alexis Conneau. 2019. Cross-lingual language model
pretraining. arXiv preprint arXiv:1901.07291 (2019).

McMahon E Lawton. 2008. Brody instrumental activities of daily living scale
(IADL). MaineHealth 108, 4 (2008), 2.

Xian Li, Ping Yu, Chunting Zhou, Timo Schick, Luke Zettlemoyer, Omer Levy,
Jason Weston, and Mike Lewis. 2023. Self-alignment with instruction backtrans-
lation. arXiv preprint arXiv:2308.06259 (2023).

Yaobo Liang, Chenfei Wu, Ting Song, Wenshan Wu, Yan Xia, Yu Liu, Yang
Ou, Shuai Lu, Lei Ji, Shaoguang Mao, et al. 2023. Taskmatrix. ai: Completing
tasks by connecting foundation models with millions of apis. arXiv preprint
arXiv:2303.16434 (2023).

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. 2023. Visual Instruc-
tion Tuning. In NeurIPS.

Zhaoyang Liu, Zeqiang Lai, Zhangwei Gao, Erfei Cui, Zhiheng Li, Xizhou Zhu,
Lewei Lu, Qifeng Chen, Yu Qiao, Jifeng Dai, et al. 2023. Controlllm: Augment lan-
guage models with tools by searching on graphs. arXiv preprint arXiv:2310.17796
(2023).

Ning Miao, Yee Whye Teh, and Tom Rainforth. 2023. Selfcheck: Using llms to
zero-shot check their own step-by-step reasoning. arXiv preprint arXiv:2308.00436
(2023).

Microsoft. 2024. Azure OpenAl Service. https://azure.microsoft.com/en-us/
products/ai-services/openai-service.

NVIDIA Corporation. 2023. Jetson Orin Modules and Developer
Kits. https://www.nvidia.com/en-us/autonomous-machines/embedded-
systems/jetson-orin/

Xiaomin Ouyang, Xian Shuai, Yang Li, Li Pan, Xifan Zhang, Heming Fu, Sitong
Cheng, Xinyan Wang, Shihua Cao, Jiang Xin, et al. 2024. ADMarker: A
Multi-Modal Federated Learning System for Monitoring Digital Biomarkers
of Alzheimer’s Disease. In Proceedings of the 30th Annual International Conference
on Mobile Computing and Networking. 404-419.

Xiaomin Ouyang, Xian Shuai, Yang Li, Li Pan, Xifan Zhang, Heming Fu, Xinyan
Wang, Shihua Cao, Jiang Xin, Hazel Mok, et al. 2023. ADMarker: A Multi-Modal
Federated Learning System for Monitoring Digital Biomarkers of Alzheimer’s
Disease. arXiv preprint arXiv:2310.15301 (2023).

Xiaomin Ouyang and Mani Srivastava. 2024. LLMSense: Harnessing LLMs
for High-level Reasoning Over Spatiotemporal Sensor Traces. arXiv preprint
arXiv:2403.19857 (2024).

Haojie Pan, Zepeng Zhai, Hao Yuan, Yaojia Lv, Ruiji Fu, Ming Liu, Zhongyuan
Wang, and Bing Qin. 2023. Kwaiagents: Generalized information-seeking agent
system with large language models. arXiv preprint arXiv:2312.04889 (2023).
Poe. 2024. Poe Platform. https://poe.com/.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan Yan, Yaxi Lu, Yankai Lin, Xin
Cong, Xiangru Tang, Bill Qian, et al. 2023. Toolllm: Facilitating large language
models to master 16000+ real-world apis. arXiv preprint arXiv:2307.16789 (2023).
Timo Schick, Jane Dwivedi-Yu, Roberto Dessi, Roberta Raileanu, Maria Lomeli,
Eric Hambro, Luke Zettlemoyer, Nicola Cancedda, and Thomas Scialom. 2024.
Toolformer: Language models can teach themselves to use tools. Advances in
Neural Information Processing Systems 36 (2024).

Dhruv Shah, Blazej Osinski, Sergey Levine, et al. 2023. Lm-nav: Robotic navigation
with large pre-trained models of language, vision, and action. In Conference on
robot learning. PMLR, 492-504.

Azmeh Shahid, Kate Wilkinson, Shai Marcu, and Colin M Shapiro. 2011. Fatigue
assessment scale (FAS). In STOP, THAT and one hundred other sleep scales. Springer,
161-162.

Yifei Shen, Jiawei Shao, Xinjie Zhang, Zehong Lin, Hao Pan, Dongsheng Li,
Jun Zhang, and Khaled B Letaief. 2024. Large language models empowered
autonomous edge ai for connected intelligence. IEEE Communications Magazine
(2024).

Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li, Weiming Lu, and Yueting
Zhuang. 2024. Hugginggpt: Solving ai tasks with chatgpt and its friends in
hugging face. Advances in Neural Information Processing Systems 36 (2024).
Shuyao Shi, Neiwen Ling, Zhehao Jiang, Xuan Huang, Yuze He, Xiaoguang Zhao,
Bufang Yang, Chen Bian, Jingfei Xia, Zhenyu Yan, et al. 2024. Soar: Design and
Deployment of A Smart Roadside Infrastructure System for Autonomous Driving.

225

[51]

[52

(53]

(60

[61

[62

o
=

[64

[65

=
S

(67

[68

[69]

[72

SenSys 25, May 6-9, 2025, Irvine, CA, USA

In Proceedings of the 30th Annual International Conference on Mobile Computing
and Networking. 139-154.

Amit Kumar Sikder, Leonardo Babun, Z Berkay Celik, Hidayet Aksu, Patrick
McDaniel, Engin Kirda, and A Selcuk Uluagac. 2022. Who’s controlling my
device? Multi-user multi-device-aware access control system for shared smart
home environment. ACM Transactions on Internet of Things 3, 4 (2022), 1-39.
Spotify. 2024. Approximate Nearest Neighbors Oh Yeah. https://github.com/
spotify/annoy.

Jennifer Yee-man Tang, Andy Hau-yan Ho, Hao Luo, Gloria Hoi-yan Wong, Bobo
Hi-po Lau, Terry Yat-sang Lum, and Karen Siu-lan Cheung. 2016. Validating a
Cantonese short version of the Zarit Burden Interview (CZBI-Short) for dementia
caregivers. Aging & Mental Health 20, 9 (2016), 996-1001.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne
Lachaux, Timothée Lacroix, Baptiste Roziére, Naman Goyal, Eric Hambro, Faisal
Azhar, et al. 2023. Llama: Open and efficient foundation language models. arXiv
preprint arXiv:2302.13971 (2023).

TP-link. 2024. TP-link Smart Home Community. https://community.tp-link.com/
en/smart-home/.

Geoffrey Vaquette, Astrid Orcesi, Laurent Lucat, and Catherine Achard. 2017.
The daily home life activity dataset: a high semantic activity dataset for online
recognition. In 2017 12th IEEE International Conference on Automatic Face &
Gesture Recognition (FG 2017). IEEE, 497-504.

Vzense. 2024. Vzense Technology. https://www.vzense.com/.

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu,
Linxi Fan, and Anima Anandkumar. 2023. Voyager: An open-ended embodied
agent with large language models. arXiv preprint arXiv:2305.16291 (2023).

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng, Pu Zhao, Jiazhan Feng,
Chongyang Tao, and Daxin Jiang. 2023. Wizardlm: Empowering large language
models to follow complex instructions. arXiv preprint arXiv:2304.12244 (2023).
Lilin Xu, Chaojie Gu, Rui Tan, Shibo He, and Jiming Chen. 2023. MESEN: Exploit
Multimodal Data to Design Unimodal Human Activity Recognition with Few
Labels. In Proceedings of the 21st ACM Conference on Embedded Networked Sensor
Systems. 1-14.

Lilin Xu, Keyi Wang, Chaojie Gu, Xiuzhen Guo, Shibo He, and Jiming Chen.
2024. GesturePrint: Enabling user identification for mmWave-based gesture
recognition systems. In 2024 IEEE 44th International Conference on Distributed
Computing Systems (ICDCS). IEEE, 1074-1085.

Bufang Yang, Yungi Guo, Lilin Xu, Zhenyu Yan, Hongkai Chen, Guoliang Xing,
and Xiaofan Jiang. 2024. SocialMind: LLM-based Proactive AR Social Assistive
System with Human-like Perception for In-situ Live Interactions. arXiv preprint
arXiv:2412.04036 (2024).

Bufang Yang, Lixing He, Neiwen Ling, Zhenyu Yan, Guoliang Xing, Xian Shuai,
Xiaozhe Ren, and Xin Jiang. 2023. Edgefm: Leveraging foundation model for
open-set learning on the edge. In Proceedings of the 21st ACM Conference on
Embedded Networked Sensor Systems. 111-124.

Bufang Yang, Lixing He, Kaiwei Liu, and Zhenyu Yan. 2024. VIAssist: Adapting
Multi-modal Large Language Models for Users with Visual Impairments. arXiv
preprint arXiv:2404.02508 (2024).

Bufang Yang, Siyang Jiang, Lilin Xu, Kaiwei Liu, Hai Li, Guoliang Xing, Hongkai
Chen, Xiaofan Jiang, and Zhenyu Yan. 2024. Drhouse: An llm-empowered di-
agnostic reasoning system through harnessing outcomes from sensor data and
expert knowledge. Proceedings of the ACM on Interactive, Mobile, Wearable and
Ubiquitous Technologies 8, 4 (2024), 1-29.

Bufang Yang, Le Liu, Wenxuan Wu, Mengliang Zhou, Hongxing Liu, and Xinbao
Ning. 2023. BrainZ-BP: A Non-invasive Cuff-less Blood Pressure Estimation
Approach Leveraging Brain Bio-impedance and Electrocardiogram. IEEE Trans-
actions on Instrumentation and Measurement (2023).

Huangqi Yang, Sijie Ji, Rucheng Wu, and Weitao Xu. 2024. Are You Being Tracked?
Discover the Power of Zero-Shot Trajectory Tracing with LLMs! arXiv preprint
arXiv:2403.06201 (2024).

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan,
and Yuan Cao. 2022. React: Synergizing reasoning and acting in language models.
arXiv preprint arXiv:2210.03629 (2022).

Jinliang Yuan, Chen Yang, Donggqi Cai, Shihe Wang, Xin Yuan, Zeling Zhang,
Xiang Li, Dingge Zhang, Hanzi Mei, Xianqing Jia, et al. 2024. Mobile Foundation
Model as Firmware. In Proceedings of the 30th Annual International Conference on
Mobile Computing and Networking. 279-295.

Andy Zhou, Kai Yan, Michal Shlapentokh-Rothman, Haohan Wang, and Yu-Xiong
Wang. 2023. Language agent tree search unifies reasoning acting and planning
in language models. arXiv preprint arXiv:2310.04406 (2023).

Chunting Zhou, Pengfei Liu, Puxin Xu, Srinivasan Iyer, Jiao Sun, Yuning Mao,
Xuezhe Ma, Avia Efrat, Ping Yu, Lili Yu, et al. 2024. Lima: Less is more for
alignment. Advances in Neural Information Processing Systems 36 (2024).

Yutao Zhu, Huaying Yuan, Shuting Wang, Jiongnan Liu, Wenhan Liu, Chen-
long Deng, Zhicheng Dou, and Ji-Rong Wen. 2023. Large language models for
information retrieval: A survey. arXiv preprint arXiv:2308.07107 (2023).


https://labelbox.com/product/model/foundry-models/gpt-3-5/
https://labelbox.com/product/model/foundry-models/gpt-3-5/
https://azure.microsoft.com/en-us/products/ai-services/openai-service
https://azure.microsoft.com/en-us/products/ai-services/openai-service
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-orin/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-orin/
https://poe.com/
https://github.com/spotify/annoy
https://github.com/spotify/annoy
https://community.tp-link.com/en/smart-home/
https://community.tp-link.com/en/smart-home/
https://www.vzense.com/

	Abstract
	1 Introduction
	2 Related Work
	2.1 Tasking Sensor Systems
	2.2 LLM for Task Planning
	2.3 LLMs for Open-ended Question Answering in Sensor Systems

	3 Motivation
	3.1 Planning from Queries
	3.2 Plan Execution and Responding

	4 System Overview
	5 Design of TaskSense
	5.1 Understanding Systems with Sensor Language
	5.2 Plan Generation
	5.3 Runtime Plan Adaptation
	5.4 Response Generation

	6 Implementation and Datasets
	6.1 System Implementation
	6.2 Datasets

	7 Evaluation
	7.1 Evaluation Metrics and Baselines
	7.2 An End-to-End Application
	7.3 Overall Performance
	7.4 Microbenchmark
	7.5 Ablation Study
	7.6 System Overhead

	8 Discussion
	9 Conclusion
	References

