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ABSTRACT
HD map is a key enabling technology towards fully au-
tonomous driving. We propose VI-Map, the first system that
leverages roadside infrastructure to enhance real-time HD
mapping for autonomous driving. The core concept of VI-
Map is to exploit the unique cumulative observations made
by roadside infrastructure to build and maintain an accu-
rate and current HD map. This HD map is then fused with
on-vehicle HD maps in real time, resulting in a more com-
prehensive and up-to-date HD map. By extracting concise
bird-eye-view features from infrastructure observations and
utilizing vectorized map representations, VI-Map incurs low
compute and communication overhead. We conducted end-
to-end evaluations of VI-Map on a real-world testbed and
a simulator. Experiment results show that VI-Map can con-
struct decentimeter-level (up to 0.3m) HD maps and achieve
real-time (up to a delay of 42ms) map fusion between driv-
ing vehicles and roadside infrastructure. This represents a
significant improvement of 2.8× and 3× in map accuracy and
coverage compared to the state-of-the-art online HD map-
ping approaches. A video demo of VI-Map on our real-world
testbed is available at https://youtu.be/p2RO65R5Ezg.
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1 INTRODUCTION
Autonomous driving systems are poised to revolutionize the
transportation industry. HD map is an essential component
for autonomous vehicles to perceive and navigate their sur-
roundings. The HD map comprises two core components:
geometry and topology[28]. Geometry encompasses the lo-
cations and semantics of stationary physical assets related
to roadways, such as lanes, road boundaries, lane dividers,
and crosswalks. We note that the HD map referred to in
this study is vectorized, which utilizes geometric primitives
like lines, curves, and polygons to depict road geometry,
instead of utilizing raw point clouds. Topology describes
lane connectivity, illustrating how lanes or groups of lanes
interconnect, influenced by predetermined traffic rules and
real-time road conditions. By providing a comprehensive
and meticulous representation of the environment, HD map
equips autonomous vehicles to comprehend scenes, chart
optimal routes, and make context-aware decisions.

Existing approaches to constructing HD maps can be cate-
gorized into two primary schemes: offline and online. Offline
construction typically involves labor-intensive data collec-
tion using specialized survey vans (above $200, 000 USD
apiece) equipped with a combination of high-end sensors
like cameras, LiDAR, GPS, IMU, and radars [3, 42]. The use
of SLAM technologies [43, 53] then facilitates the creation of
globally consistent maps, followed by either manual or semi-
automatical annotation of the maps. Major players in the
autonomous driving industry, such as TomTom [47], HERE
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Figure 1: Infrastructure-assisted HD mapping.
[46], and Baidu [3], adopt this approach for its ability to
generate highly detailed and comprehensive map informa-
tion. However, this existing practice suffers from excessive
costs. Moreover, the constructed maps can easily become
outdated between two mapping iterations [24, 38]. This is
because maintaining up-to-date HD maps of large areas can
be impractical given the sheer size of road networks and
frequent changes of lane connectivity [37]. Consequently,
most current offline HD maps are built for highways, leaving
city roads largely uncovered [6].
To address the challenges inherent in the offline scheme,

recent advancements [9, 22, 27, 29, 30] explore the concept
of online HD map learning. This approach aims to estimate
the local HD map on-the-fly based on onboard sensor ob-
servations such as point clouds of LiDARs and/or images
of the surrounding cameras. While this strategy reduces
reliance on global offline HD maps and offers the poten-
tial for more cost-effective and scalable HD mapping, it is
not without limitations. These methods encounter inherent
limitations stemming from on-vehicle sensors and dynamic
road conditions. These challenges encompass limited sensor
field-of-view and variations in sensor data quality attributed
to factors like occlusion and swift movement. Additionally,
online HD maps typically lack road topology due to the com-
plexities of inferring such logical information in real time.
Consequently, current online map construction schemes can
be fragile and incomplete.

Interestingly, we discover that intelligent roadside infras-
tructure or roadside unit (RSU), equipped with sensors and
compute units, presents an ideal solution for HD map con-
struction. Notably, a distinctive and crucial attribute unique
to roadside infrastructure is its ability to continuously ob-
serve road sectionswhile stationary. This capability addresses
the shortcomings of both offline and online methods. Firstly,
compared to offline approaches, uninterrupted and contin-
uous observation allows infrastructure to promptly update
the dynamically evolving HD map. Secondly, in contrast to
online techniques, the broad field of view and static, accu-
mulated observations empower infrastructure with compre-
hensive, unobstructed, and high-quality sensor data.

Motivated by the challenges encountered by current meth-
ods and the potential of intelligent roadside infrastructure
in HD map construction, this paper introduces VI-Map, the

pioneering system that harnesses roadside infrastructure to
create and maintain HD maps for autonomous driving. In
our design, infrastructure employs its own sensors, like Li-
DARs or 2D/3D cameras, to construct and refresh the HD
map. The vehicle then integrates this map with its own HD
map in real-time, enhancing/updating the vehicle’s scene
understanding (as depicted in Fig. 1). The core idea behind
VI-Map is to capitalize on the distinct, stationary, and cu-
mulative observations of roadside infrastructure to facilitate
accurate and current HD mapping. Specifically, VI-Map first
extracts 5 carefully designed concise bird-eye-view (BEV)
features from the dense point clouds and accurate vehicle tra-
jectories captured by infrastructure, and then employs them
for efficient map geometry construction. VI-Map then lever-
ages the latest vehicle trajectories to estimate and update the
current map topology. Finally, VI-Map adopts a new three-
stage map fusion algorithm to merge the infrastructure’s
HD map with the on-vehicle one. We note that VI-Map does
not aim to replace existing HD mapping methods. Instead, it
offers a critical complementary HD mapping paradigm for
autonomous driving, by leveraging increasingly available
intelligent roadside infrastructure.
VI-Map offers several key advantages. (i) It transforms

massive and unstructured cumulative 3D data into struc-
tured, compact, and concise 2D bird-eye-view (BEV) features.
These features can be processed with a highly efficient 2D
CNN, greatly reducing the compute overhead and enabling
its practical deployment on edge devices on infrastructure.
(ii) VI-Map generates vectorized HD maps on the infrastruc-
ture. Such vectorized representation is highly lightweight,
minimizing the communication overhead between infras-
tructure and vehicles. Additionally, the representation is
also compatible with OpenDRIVE [36], a widely adopted
industry-standard HD Map data format. (iii) VI-Map does
not require the precise location of roadside infrastructures
or time synchronization between vehicles and infrastruc-
ture. This significantly lowers the barriers to the wider de-
ployment of roadside infrastructure and the adoption of our
solution. (iv) VI-Map allows a simple, fast, and flexible de-
ployment, as it allows roadside infrastructure nodes to build
their own HD maps independently, which are then fused
into the continuous global on-vehicle HD map. As a result,
VI-Map can work with mobile RSUs that are deployed on
complex and rapidly changing road sections where there is
a critical demand for fresh HD map updates. VI-Map can
thus offer patches for updating the global HD map at im-
portant road sections, complementary to the existing offline
and online map construction schemes. This leads to a highly
scalable architecture for infrastructure-assisted HD mapping
for autonomous driving.
We have implemented VI-Map on a real-world testbed

consisting of a modified passenger vehicle, and a mobile RSU
2
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(a) Left: The topology of an outdated HD map cannot re-
flect the vehicle breakdown. Right: Vehicles fail to make
the right steering decision and cause traffic congestion.

(b) Left: The topology of a fresh HD map depicts the
blocked and accessible lanes. Right: Vehicles change to
the accessible lane in advance.
Figure 2: Vehicle behaviors with the topology extracted
from outdated HD map and fresh HD map.

that is deployed at 18 different road sections in two cities, cov-
ering up to 5 types of roads. We collected two new datasets
using the testbed and a leading simulation platform for au-
tonomous driving [16], respectively. The results demonstrate
that compared with the online map construction approaches,
VI-Map can extend the local HDmap range of a vehicle by 3×
and improve the map accuracy by 2.8×, while only incurring
42ms map fusion delay on the vehicle. At the application
level, VI-Map increases the traffic efficiency of problematic
road sections by over 5× and improves the ride comfort index
by 3.9×. A video demo of VI-Map on our real-world testbed
is available at https://youtu.be/p2RO65R5Ezg.

2 MOTIVATING CASE STUDY
This section begins with a case study to understand the limi-
tations of current HDmaps on autonomous vehicles (Sec. 2.1).
Then, we provide the key insights into the advantages offered
by infrastructure in generating timely and high-quality HD
maps, underscoring the potential of infrastructure-assisted
HD mapping (Sec. 2.2).

2.1 Limitations of on-vehicle HD maps
Offline HDMaps. Autonomous vehicles rely on up-to-date
HD maps for both global route planning as well as local
behavior decisions and motion planning. However, various
road situations such as road construction, congestion, and
accidents make road geometry and topology (i.e., lane con-
nectivity) ever-changing, necessitating frequent HD map
updates for safe and efficient autonomous driving [24, 38].
Vehicles with outdated HD maps may make wrong be-

havior and motion planning decisions that do not comply
with current road conditions, leading to sub-optimal or even
hazardous driving performance. We illustrate an example
using CARLA [16], a popular driving simulator that has been

used in developing industrial autonomous vehicle systems
such as Apollo [2] and Autoware [1].

In this case study, a broken-down vehicle blocks the right-
most lane, leading to a change in road topology where the
right lane is no longer connected to other lanes. Fig. 2(a)
and Fig. 2(b) illustrate the behavior of vehicles with an ob-
solete HD map and a fresh HD map, respectively. With the
outdated HD map, vehicles suffer from sudden braking and
sharp turns, which results in a slower speed or even conges-
tion. In contrast, a fresh HD map allows vehicles to be aware
of the lane states in advance and make better decisions, such
as choosing the unimpeded left lane, leading to smoother and
faster passage through the impacted road section (average
speed 1.6m/s vs. 8.1m/s). Note that the decisions made by
CARLA’s autonomous driving agents in the case study may
not be optimal. Nevertheless, we still observe considerable
benefits of maintaining a real-time HD map, even with the
off-the-shelf autonomous driving agent implementations.
Online HD Maps. Online map construction methods use
the onboard sensor to obtain up-to-date HD maps. However,
such maps are susceptible to the vehicle’s limited sensor
range and uncertain sensor data quality. For an intuitive
illustration, we run the online map construction method
[27] on the real vehicle LiDAR data collected from a city
street. A detailed result/visualization can be found in the
video in the abstract. In particular, the occlusion of LiDAR by
surrounding vehicles makes the constructed map incomplete
and fragmented. Our evaluation reveals that the integrity of
online-generated maps could fall below 25% when half of
the road is occluded, which cannot meet the stringent safety
requirements for autonomous driving.

2.2 Benefits of Roadside Infrastructure
As discussed in Sec. 2.1, offline HD maps provide a complete
but outdated perception, while up-to-date online HD maps
constructed by the vehicle only can be inaccurate. This work
addresses these issues by exploiting infrastructure-assisted
HD map construction and update. Roadside infrastructure
can achieve continuous observation of road sections at a
standstill, which is ideal for local HD map construction as
it offers two key advantages: higher perception quality and
the ability to capture real-time topology changes. Roadside
infrastructure, including off-the-shelf RSUs [12, 13, 20], is
increasingly available. This trend provides an opportunity to
leverage roadside infrastructure to improve the HD mapping
of autonomous vehicles.
Complete and clear perception. The sensors installed
on the infrastructure provide a broader field of view and a
longer perception range, and are less likely to be obstructed
compared with sensors mounted on vehicles. Moreover, by
accumulating the sensor data over time, we can obtain a
much more detailed and precise observation of the road. The
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Figure 3: Infrastructure point cloud accumulation
brings clearer perception.
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Figure 4: An illustration ofwhatwe can extract fromve-
hicle trajectories (Left to right: vehicle trajectories, tra-
jectory attributes, and corresponding map elements.).

left and right images in Fig. 3 illustrate the point clouds
of the infrastructure from one frame and from a 10-second
superimposition, respectively. The accumulated point cloud
from the infrastructure can provide much more details and
accurate information like lane lines and road boundaries,
which are essential for autonomous driving.
Precise Trajectory Observations. By using LiDAR for
vehicle detection and tracking, infrastructure can obtain con-
tinuous and accurate trajectories (decimeter accuracy [33]),
which is exclusive to infrastructure and cannot be obtained
through alternative methods like the vehicle’s GPS. Our key
observation is that these fresh and precise trajectories pro-
vide valuable information for reasoning about the geome-
try and topology of the road. We demonstrate our findings
using a typical real-world intersection (Fig. 4). Trajectory
density differentiates lanes and helps find lane dividers and
road boundaries. Trajectory direction is consistent with map
topology, indicating directed connectivity between lanes.
Trajectory direction variance reflects differences in driving
direction at the same location, which is high near intersec-
tions. Therefore, it can be used for inferring potential cross-
walks. These observations can be incorporated together to
achieve real-time yet highly lightweight map construction
and update.

3 DESIGN OF VI-MAP
3.1 System Overview
We propose VI-Map, the first system that exploits roadside
infrastructure for real-time HD mapping for autonomous
vehicles. Fig. 5 shows the overview of VI-Map. Specifically,

VI-Map harnesses distinct data collected by roadside infras-
tructure, including the accumulated point cloud and precise
vehicle trajectories, to build and maintain HD maps. Notably,
these two types of data are unique to roadside infrastructure.
To the best of our knowledge, our work represents the first
attempt to discover and leverage such specific data sources
for the purpose of HD map construction.

VI-Map consists of three key components. Firstly, to effec-
tively handle the massive, unstructured, and heterogeneous
3D point cloud and trajectory data, the geometry construction
(Sec.3.2) module projects these data types into the BEV space.
This yields a streamlined, structured, and unified 2D BEV
representation. Then, it extracts specific features from both
data types, distilling valuable insights tailored for generating
map geometry. The geometry module utilizes less fresh but
massive point cloud and trajectory data for high-precision
geometry prediction. In contrast, the topology estimation
(Sec.3.3) uses newly arriving trajectories for topology rea-
soning. An update strategy is designed to identify trajectory
changes and trigger the topology update. The resulting pre-
cise vectorized map geometry, along with the fresh topology,
forms a concise infrastructure HD map. Finally, the map
fusion (Sec.3.4) executed within the vehicle receives the in-
frastructure HD map and merges it with the on-vehicle HD
map. This module adeptly employs the semantic, proximity,
and direction attributes of the vectorized HD map, facilitat-
ing the swift integration of infrastructure and vehicle HD
maps, thereby providing real-time HD map support for au-
tonomous driving. Furthermore, the vectorized HDmap itself
is extremely lightweight, leading to minimal communication
overhead and robust adaptability to varying communication
conditions between infrastructure and vehicles.

3.2 Geometry construction
This module aims to generate the geometry component of
the HD map on the infrastructure, making use of two key
data sources obtained from the infrastructure: accumulated
point clouds and vehicle trajectories. In our design, the map
geometry is defined as vectorized representations of four
road element types: road boundary, lane divider, lane, and
crosswalk. These elements cover the most common elements
in HD maps and are consistent with the existing online map
construction methods [27, 29]. Specifically, line-based ele-
ments such as road boundaries and lane dividers are repre-
sented as spline curves, while region-based elements like
lanes and crosswalks are represented as polygons.

The geometry construction poses the following challenges:
(i) Point cloud and trajectory are two heterogeneous data
types and can be hard to deal with simultaneously. (ii) Pro-
cessing the multi-frame accumulated 3D point clouds on the
infrastructure edge device with limited computing resources
is a challenge. We approach these challenges by projecting
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Figure 5: System architecture of VI-Map.

the two types of data to a bird-eye view (BEV) and raster-
izing them. As a result, (i) unstructured LiDAR points and
trajectories are both converted to a regular grid, enabling
simultaneously learning features from both inputs to infer
geometry; (ii) such image-like BEV representation can be
efficiently processed by a highly lightweight 2D CNN, elimi-
nating the need for resource-intensive 3D point cloud DNNs.
This approach enables the construction of maps on a mobile
GPU with high efficiency.
Fig. 6 shows the pipeline of the geometry construction

module, which includes four steps: BEV projection, feature
extraction, instance segmentation, and vectorization. In the
initial step, the two types of accumulated data are projected
into the BEV space. From this projection, we extract five
meticulously crafted features, which are tailored for the in-
ference of map geometry. These features are subsequently
inputted into a 2D CNN for instance segmentation. This pro-
cess yields map element instances represented as grid maps.
Ultimately, the grid-based representation of map elements
undergoes vectorization, culminating in the creation of a
vectorized HD map.
BEV projection. First, we describe the process of obtaining
the accumulated point cloud and accurate vehicle trajectories.
For each infrastructure point cloud frame, we use a state-of-
the-art 3D multi-object tracking method (AB3DMOT [51]) to
detect and track vehicles. Frames with no vehicle detection
or tracking are accumulated as a static point cloud, while
trajectories are saved for tracked vehicles. Then, we project
the point cloud and trajectories onto the ground plane in the
BEV view. Points in the point cloud with distances greater
than 0.5m from the ground are filtered out, as they may
include points of trees or buildings that are irrelevant for
map construction. Both the LiDAR points and trajectories
are projected onto the ground plane, resulting in a set of 2D
points (𝑥,𝑦), where (𝑥,𝑦) represents the coordinates of each
point. Finally, we rasterize the points to generate 2D grids.
In particular, we scatter the point into pixel location (𝑢, 𝑣)
with the grid size of (𝐻,𝑊 ). The rasterization is denoted
by 𝑢 = [(𝑥 − 𝑥min) /𝛼] , 𝑣 = [(𝑦 − 𝑦min) /𝛼]. The grid height
and width are denoted by 𝐻 = [(𝑥𝑚𝑎𝑥 − 𝑥min) /𝛼] ,𝑊 =

[(𝑦𝑚𝑎𝑥 − 𝑦min) /𝛼], respectively, where [·] is the rounding
operation and 𝛼 indicates the resolution of the rasterization.
For instance, when 𝛼 = 10, the cell size is 0.1m × 0.1m.
Following the previous step, we obtain BEV grid representa-
tions for the point cloud and trajectory, respectively, where
each cell may contain varying numbers of points. Each point
contains some features, we design and extract these features
in the next step.
Feature extraction. We design five features from the Li-
DAR points and trajectory points for HD map construction,
i.e., height, intensity, density, direction mean, and direction
variance. For LiDAR points, we calculate the maximum dis-
tance to the ground plane in each cell as the height feature
(∈ R1). It can help us infer the road boundaries since curbs
are usually 0.2 ∼ 0.3m higher than the ground. We also
compute the average intensity (∈ R1) of points in each cell.
High intensity indicates the existence of ground markings,
such as lane dividers and crosswalks, because the paints used
for ground marking printing are usually reflective. For the
trajectory points, we compute three features as motivated in
Sec. 2.2, i.e., density (∈ R1), direction mean (∈ R2), and direc-
tion variance (∈ R1). The density is computed by counting
the number of trajectory points in each cell. We use a 2D
direction vector instead of an angle to represent the direc-
tion to improve the smoothness of the representation space.
The direction variance is defined as 𝜎2 = 1 − ∥R∥2, where
𝑅 =

∑
𝑖 v𝑖/𝑛 is the average of the 𝑛 direction vectors {v𝑖 } and

∥ · ∥2 is the L2 norm of the average direction. To summarize,
we extract a total of five features for each cell and concate-
nate them to form a feature map with shape (𝐻,𝑊 , 6), where
the trajectory direction vector occupies two channels.
BEV instance segmentation.We employ a 2D CNN with
a UNet-like structure [41] to perform semantic instance seg-
mentation with the extracted feature map in BEV. The predic-
tion is made for four road element types: lane, road boundary,
lane divider, and crosswalk, We train the CNN using com-
bined weighted cross-entropy loss [39] and instance cluster-
ing loss [15], which is denoted by 𝐿 = 𝛼𝐿𝑠𝑒𝑚𝑎𝑛𝑡𝑖𝑐 + 𝛽𝐿𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 .
The CNN takes the feature map of shape (𝐻,𝑊 , 6) as input
and generates a pixel-wise mask for each individual road
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Figure 6: Design of the HD map geometry construction on roadside infrastructure.

element, resulting in an instance mask output. The instance
segmentation results also act as inputs for the topology esti-
mation module.
Map vectorization. The instance segmentation maps for
each category of road elements can not be directly used by
vehicles, as they are not compatible with most autonomous
driving frameworks, which typically employ vectorized rep-
resentation for HD maps. Therefore, we further vectorize the
map, generating sparse and compact representations of the
HD map. This step also minimizes the map’s data volume,
hence decreasing the communication overhead during the
transmission of the infrastructure HD map to vehicles.
We follow the standard HD map specifications in ASAM

OpenDRIVE tomodel the road elements as splines (for bound-
aries and dividers) or polygons (for lanes and crosswalks).
We first extract each instance as a set of pixel locations
{(𝑢𝑖 , 𝑣𝑖 ); 𝑖 = 1, ..., 𝑛} on the segmentation map. To fit each
boundary and divider, we seek a cubic function 𝑔(𝑢) that
minimizes the mean square error: 1/𝑛∑𝑖 (𝑔 (𝑢𝑖 ) − 𝑣𝑖 )2. The
solution can be easily found by least squares regression. We
fit the minimum enclosing rectangle of {(𝑢𝑖 , 𝑣𝑖 )} as the ge-
ometry representation for lanes and crosswalks.

3.3 Topology Estimation
This module builds and updates the map topology by leverag-
ing the precise vehicle trajectories and instance segmentation
results of lanes from Sec. 3.2. We adopt a graph to represent
the topology, following the definition in OpenDRIVE. In this
context, the graph’s nodes and edges correspond to lanes
and the connections between them, respectively. The design
of this module is based on our key observation that precise
vehicle trajectories can be used for inferring map topology
and identifying topology changes. This is due to the strong
correlation between lane connectivity and trajectory, allow-
ing the inference of one from the other. Additionally, since
trajectories are continuous, utilizing fresh trajectory data
enables timely estimation and update of the map topology.
The principle of topology construction is as follows: if

two lanes are crossed by the same trajectory, they are con-
sidered to be connected. The connectivity is directed, which
is described by the direction of the trajectory. As discussed

in Sec. 2.1, the road topology is dynamic. Thus, we design
an update strategy to decide when to trigger an update
upon topology changes. The update strategy detects topol-
ogy changes from both temporal and spatial dimensions and
cross-validates them to reduce erroneous updates. Specifi-
cally, for the temporal dimension, we assume that, for each
lane 𝑖 , the arrival time 𝑡 for 𝑘 vehicle trajectories follows a
Poisson distribution. We discretize the continuous arrival
time and define it as the number of time units. Each time unit
has a duration of 1 seconds. The probability mass function
for each lane 𝑖 is defined as: 𝑃𝑖 (𝑡, 𝑘) = (𝜆𝑖𝑡 )𝑘𝑒−𝜆𝑖𝑡

𝑘! . The rate pa-
rameter 𝜆𝑖 for each lane 𝑖 will be dynamically updated based
on the set of most recent historical observations on the ar-
rival time for 𝑘 trajectories within a predefined time interval.
In our experiments, we set the time interval to be one-hour
long, which is a common update interval in many traffic flow
monitoring and forecasting works [40, 45]. We then use a 𝜒2
test with a significance level of 0.05 to determine for each
lane 𝑖 if the historical observations follow the current Poisson
distribution. In the spatial dimension, we compute the three
trajectory features, trajectory density, direction mean, and
direction variance for the most recent 𝑘 trajectories. Then
we calculate the cross-entropy loss 𝑙 between the current
trajectory features and those in the one-hour time interval.
The map topology is updated only if 𝑝 > 0.05 and 𝑙 exceeds
a specified threshold.

3.4 Map fusion
This module runs on the vehicle and aims to merge the
received HDmap from the infrastructure with the on-vehicle
HD map. This involves addressing the map fusion problem,
i.e., find the coordinate transformation between the two
maps and use this transformation to integrate them. Existing
map fusion techniques are primarily developed for scenarios
like multi-robot cooperative SLAM, where the maps being
fused are occupancy grid maps. However, these existing
methods cannot be directly adapted to our context due to
the distinction in map types — we aim to fuse two vectorized
HD maps. To the best of our knowledge, there is currently
no map fusion method with the exact same settings as ours.
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To this end, we propose a three-stage map fusion algo-
rithm to merge the infrastructure HD map and the vehicle
HDmap. Fig. 7 shows a pipeline of this module. Firstly, we ex-
ploit the semantic attributes and spatial proximity of the map
elements to establish their correspondence. Subsequently, we
utilize the directional characteristics to determine the trans-
formation between the twomaps, relying on their established
correspondences. This transformation is then employed to
align the two HD maps accurately. Lastly, we refit each pair
of corresponding map elements into a unified representation,
culminating in the creation of the final merged HD map.
Stage 1: Map element correspondence.. To merge two HD
maps, each having multiple road elements, we need to first
find element correspondence between the infrastructure and
vehicle. We commence by transforming the infrastructure
HD map from its infrastructure coordinate to the vehicle
coordinate using an initial transformation, which can be
easily derived based on the infrastructure and vehicle poses
obtained from GPS and IMU data. This preliminary transfor-
mation can be inaccurate due to GPS errors, which will be
refined in the next stage. Then, within the vehicle’s HD map,
we adopt a straightforward approach whereby we match
each map element with its counterpart in the infrastructure
HD map. This matching is established based on shared se-
mantic label and proximity, with the corresponding element
being the one in the infrastructure HD map that holds the
same semantic label and exhibits the shortest distance. The
distance between two elements is defined as the distance
between their nearest endpoints. One fact is that an element
in the infrastructure HD map might correspond to multi-
ple elements within the vehicle HD map, particularly when
occlusions in the vehicle’s perspective lead to the fragmen-
tation of map elements. Notably, we leverage the semantic
labels of map elements to enhance matching accuracy and
efficiency. Specifically, we exclusively select elements belong-
ing to the same semantic category as potential corresponding
pairs. This simple yet effective approach has demonstrated
commendable results in establishing correspondence, even
in cases where the initial transformation is inaccurate.
Stage 2: Map alignment.. After we find all the corresponding
element pairs, we eliminate the error in the initial transfor-
mation by refining the alignment between all of the element

pairs. Note that we do the alignment only using line-type el-
ements (splines) since it reveals more positional information.
We find the optimal rigid transformation by minimizing a
novel direction-aware chamfer distance between two spline
curves. Specifically, we first convert the splines back to points
by sampling with a fixed interval. We then compute the tan-
gent directions (𝑑𝑢, 𝑑𝑣) of each point. Together with position
(𝑢, 𝑣), we assign a tuple𝜓 = (𝑢, 𝑣, 𝑑𝑢, 𝑑𝑣) for each point, and
we got two tuple sets from infrastructure and vehicle {𝜓𝑖 },
{𝜓𝑣}. Next, in each iteration, we first find tuple correspon-
dences by searching for the closest tuple in {𝜓𝑖 } for each
𝜓𝑣 . The distance is defined as the Euler distance between
two tuples. We then estimate a rigid transformation using
a weighted root mean square,𝑤 = cos(𝜃𝑣 − 𝜃𝑖 )𝛾 , where 𝛾 is
a hyperparameter that controls how much bias the estima-
tion should lean towards points that have similar directions.
We average all the transformations estimated from each cor-
responding element pair. The mean value is then used to
transform the splines on the infrastructure. We then repeat
the above process for several iterations. We find that five
iterations can already lead to convergence. Finally, we get a
refined transformation that can align the map element from
the infrastructure to the vehicle.
Stage 3: Map element re-fitting.. Finally, we merge each cor-
responding pair into one union map element. For line type
element, we densely sample points on the two elements,
and repeat the fitting process as illustrated in Sec. 3.2. For
regional features, We simply take the union of a pair of cor-
responding elements. We now have an integrated HD map
that is aligned with the vehicle perspective, which can be
used in the downstream tasks.

4 TESTBED AND DATASET
In this section, we will present the testbeds of VI-Map and
datasets collected for evaluations. The research has been
granted IRB approval.
Testbed. We implement VI-Map on both a real-world setup
and CARLA simulator for extensive data collection and eval-
uation. Fig. 8 shows our real-world setup, which includes a
modified vehicle and a customized mobile pole as the road-
side infrastructure unit. Each pole equips two Livox AVIA
LiDARs [31] at the height of 5m. A Livox HAP LiDAR [32]
is mounted on top of a vehicle at about 1.7m. The mobile
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Table 1: Comparisons between the hardware and costs of the RSUs in existing works [25, 48] and in VI-Map.
Works Sensors Compute units Communication units Total cost per RSU

[25] UMRR-0C radar
Basler acA1920-50gc camera

×4
×4

INTEL Xeon E5-2630v4 2.2GHz CPU
NVIDIA Tesla V100 SXM2 GPU

×2
×2 % ∼USD $20,000

[48] Velodyne VLP-16 LiDAR ×1 Laptop PC (CPU Core i7 8-cores)
with 16GB RAM ×1 Intel Wi-Fi 6 AX200 ×1 ∼USD $4,700

VI-Map
Livox AVIA LiDAR
NEO-M8T GPS

HWT9052-485 IMU

×2
×1
×1

Nvidia Jetson Orin ×1 IoTwrt AR350 switch ×1 ∼USD $5,600

LiDAR

Orin
IMU

GPS

(a) Modified vehicle.

LiDAR

GPS
IMU

Orin
Antenna

(b) Mobile roadside infrastructure.

(c) 18 tested locations in two cities.

Infrastructure 

Figure 8: A real-world testbed deployed for VI-Map
data collection and system evaluation.

(a) Locations of roadside in-
frastructure.

(b) HD map parsed from
OpenDRIVE file.

Figure 9: Town 5 map used in CARLA dataset.
pole is installed with an NVIDIA Jetson Orin and an 802.11ac
WiFi router for wireless communication with vehicles. The
test vehicle (see Fig. 8) carries another Orin to run an online
HDmap construction baseline [27] and VI-Map’s map fusion
code. Both vehicle and mobile pole install a NEO-M8T GPS
[49] and an HWT9052-485 IMU [52] to estimate the pose.
Here we present a cost analysis for the mobile RSU, pro-

viding valuable insights into its practical implementation in
real-world scenarios. Table 1 presents comparisons between
the hardware and costs of the RSUs used in existing works
[25, 48] and in VI-Map. Each RSU primarily comprises sev-
eral components: sensors, compute units and communication
units. It is worth noting that the cost of RSUs can potentially
be further curtailed, particularly as LiDAR prices continue to
decrease over time. In order to ensure comprehensive road
coverage, the recommended deployment distance between
two adjacent RSUs is approximately 50 meters.
Existing autonomous driving public datasets [8, 18] only

provide vehicle-centric point cloud data, which cannot be

Table 2: Summary of two new datasets, where “infr.”
represents infrastructure and “veh.” represents vehicle.

Dataset #road
sections

#road
types

#GT HD maps
(infr./veh.)

#point cloud frames
(infr./veh.)

Real-world dataset 18 5 18/4586 16752/4586
CARLA dataset 50 8 50/25300 89761/25300

used for the evaluation of VI-Map. Therefore, we collect two
new datasets, one from our real-world testbed and one gen-
erated by the CARLA simulator [16]. Both datasets contain
a constant period of point clouds from both the infrastruc-
ture and the vehicle. The real-world dataset is collected from
18 road sections in two cities, covering a variety of road
types (T-junctions, crossroads, bends, straight roads, etc.)
and varying lane numbers ranging from one to six lanes. Ta-
ble 2 summarizes the two datasets. The details are as follows.

Real-world Dataset. During the collection of the dataset,
the average collection time of the infrastructure point cloud
is 3 minutes (up to around 10 minutes). The vehicle speed
is 25 km/h on average (up to around 30 km/h). To obtain the
ground-truth HD maps, we first register each point cloud
pair of infrastructure and vehicle, and then project the fused
point clouds to BEV and rasterize it to images, with a resolu-
tion of 0.15m/pixel. Then, we manually annotate the map
geometry (polylines and polygons) in the images using the
CVAT tool [14]. We annotate an HD map for each pair of
infrastructure-vehicle point clouds and individual vehicle
point clouds if it has little overlap with the infrastructure
point cloud. Separate ground-truth HD maps of infrastruc-
ture and vehicles are obtained by cropping the fused HD
maps. The map topology for each road section is manually
annotated as an 𝑛×𝑛 binary array, where 𝑛 denotes the num-
ber of lanes in a road section, and values of 1 and 0 indicate
the connection and disconnection of two lanes, respectively.
As a result, we obtain one infrastructure HD map and multi-
ple vehicle HD maps for each road section, which are used as
the training data of our geometry construction module and
the online map construction baseline [27], respectively. We
also annotate the vehicles in the infrastructure point cloud
for the training data of tracking algorithm AB3DMOT [51].
CARLA Dataset.We also render a dataset in CARLA [16].
We configure roadside infrastructures at different locations
of Town 5 in the CARLA ecosystem. Each infrastructure and
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the ego vehicle is installed with a LiDAR with 32 channels
and 360° field of view, which is consistent with mainstream
autonomous driving datasets [8, 18]. We generate 200 vehi-
cles wandering around the whole town to simulate the traffic
flow. We parse the map file (in .xodr file format defined by
OpenDRIVE) provided by CARLA to generate the ground-
truth HD map of the whole town. Then, the local HD map
of each infrastructure and each frame of the vehicle point
cloud is obtained by cropping the town map according to the
pose of each subject. Fig. 9 shows all the infrastructure loca-
tions and the global HD map. The CARLA dataset covers 50
road sections in a town of 439m × 509m. Moreover, CARLA
enables the simulation of events that causes changes in road
topology, such as vehicle breakdown or accidents, which
can be dangerous to simulate in the real world. We simulate
vehicle breakdown in road sections with three different road
types, i.e., T-junctions, intersections, and two-way two-lane
straight roads. We also simulate different degrees of road-
marking blurriness, i.e., mild (< 20%), moderate (50% − 60%),
and severe (> 90%).

5 EVALUATION
5.1 Evaluation Setup and Metrics
5.1.1 Evaluation setup.. We set the height 𝐻 and width𝑊
of the BEV grid (r.f. Section 3.2) to 300, according to the road
coverage of the infrastructure point cloud. The geometry
construction model of VI-Map, the vehicle tracking model
[51], and the baseline model [27] are trained or fine-tuned
using the two datasets introduced in Sec. 4. The training is
performed on a server equipped with Intel Xeon Silver 4210
CPU and one NVIDIA RTX 2080Ti GPU. We adopt 10-fold
validation for the three models.
5.1.2 𝐼𝑜𝑈 , 𝐶𝐷𝑃 , 𝐶𝐷𝐿 , 𝐶𝐷 , 𝑃 , 𝑅.. We adhere to the evalua-
tion methodologies in [19, 27, 29] and employ these widely
recognized evaluation metrics to assess the precision of map
geometry. Intersection-over-union (𝐼𝑜𝑈 ) and Chamfer dis-
tance (𝐶𝐷) are used as metrics for evaluating line-type ele-
ments such as boundary and divider. For the regional element
crosswalk, we use 𝐼𝑜𝑈 , precision (𝑃 ), and recall (𝑅) as met-
rics. Specifically, 𝐼𝑜𝑈 is an Eulerian metric that measures the
pixel semantic differences between the predictedmap and the
ground truth, which is denoted by IoU (D𝑃 ,D𝐺 ) = |D𝑃∩D𝐺 |

|D𝑃∪D𝐺 | ,
in which D𝑃 ,D𝐺 ⊆ R𝐻×𝑊 ×𝐷 are dense representations of
map elements (curves and polygons rasterized on the BEV
grid), D𝑃 is the prediction and D𝐺 represents the ground
truth,𝐻 and𝑊 are the height and width of the BEV grid,𝐷 is
the number of map element categories and | · | denotes the size
of the set. 𝐶𝐷 is a Lagrangian metric that measures the spa-
tial distances of vector geometric shapes (curves or splines).

𝐶𝐷Dir is the directional Chamfer distance and 𝐶𝐷 is the bi-
directional Chamfer distance. Specifically,𝐶𝐷Dir is defined as
CDDir (S1,S2) = 1

S1

∑
𝑥∈S1 min𝑦∈S2 ∥𝑥 − 𝑦∥2, where S1 and

S2 are the two sets of points sampled on the predicted curve
and the ground-truth curve. 𝐶𝐷𝑃 denotes the 𝐶𝐷 from pre-
diction to label (equivalent to precision), while 𝐶𝐷𝐿 denotes
the 𝐶𝐷 from label to prediction (equivalent to recall). 𝐶𝐷
is defined as CD (S1,S2) = CDDir (S1,S2) + CDDir (S2,S1).
The precision and recall metrics used for regional elements
are defined as 𝑃 =

|D𝑃∩D𝐺 |
|D𝑃 | and 𝑅 =

|D𝑃∩D𝐺 |
|D𝐺 | , respectively.

𝐶𝐷𝑃 and 𝐶𝐷𝐿 reflect the accuracy and completeness of the
predicted map, respectively.
5.1.3 Ride comfort, average passing time, traffic throughput..
We evaluate the benefits VI-Map can bring using these three
metrics related to user experience. The ride comfort is quan-
tified using longitudinal acceleration 𝑎𝑥 and lateral accelera-
tion 𝑎𝑦 of vehicles, widely acknowledged as key indicators
for evaluating ride comfort [23, 35]. Lower acceleration value
corresponds to better ride comfort. The average passing time
is the average time for a vehicle to traverse a road section.
The traffic throughput is the number of vehicles passing
through a road section during a fixed period.
5.1.4 Response time, success time, success rate.. We use these
three metrics to evaluate the performance of the map topol-
ogy update strategy. Response time is defined as 𝑡𝑟−𝑡𝑐 , where
𝑡𝑐 and 𝑡𝑟 are the moment when the road topology changes
and the moment the infrastructure map topology is updated,
respectively. Success time is given by 𝑡𝑠 − 𝑡𝑐 , where 𝑡𝑠 is the
moment when the map topology is updated correctly. 𝑡𝑠 can
be different from 𝑡𝑟 as the update can be wrong. The success
rate is the number of correct topology updates divided by
the number of all updates.
5.2 End-to-end Evaluation
We evaluate the end-to-end system performance of VI-Map
on a real-world road with four road types, i.e., two-way sin-
gle crossroad, T junction, four-lane straight road, and bend.
Fig. 10 shows the trace that the vehicle enters and exits a
crossroad with a mobile pole on the side. The gray dots are
the vehicle point clouds along the trace. The colored dots
denote the vehicle’s GPS positions, where different colors
represent the 𝐼𝑜𝑈 of the constructed HD map. At the be-
ginning and end of the trace, the 𝐼𝑜𝑈 is 40% with only the
on-vehicle HD map available. When the vehicle enters the
coverage of the infrastructure, the 𝐼𝑜𝑈 increases to 80% with
the fused HD map. The result shows that VI-Map can benefit
the vehicle with the precise infrastructure map and thus as-
sist the vehicle in going through complicated road sections
safely. We also measure the end-to-end latency of VI-Map.
VI-Map achieves an end-to-end latency of 37𝑚𝑠 on aver-
age and 42ms maximum. This means that VI-Map can work
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Figure 10: HD map 𝐼𝑜𝑈
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Figure 13: VI-Map improves
traffic efficiency.

in real-time since most autonomous vehicles have a sensor
frame rate of 10Hz. Additionally, we observe gaps between
the IoU at the beginning and end of the trace, even though
there are both vehicle HD maps only. This is because the
road markings at the start place are badly worn, resulting in
a very low IoU of the online map. We evaluate the influence
of the road marking incompleteness in Section 5.6.

5.3 Benefit of VI-Map
In this section, we evaluate the benefits VI-Map can bring
to autonomous vehicles. The key observations from this
section are: (i) The precise map geometry of VI-Map comple-
ments and extends the vehicle’s online HD map beyond the
limitations of single-vehicle perception. (ii) The fresh map
topology of VI-Map enables vehicles to make better behav-
ior decisions under the current road conditions, benefiting
passengers, vehicles, and transportation systems.
5.3.1 Extend online HD map range. We evaluate the ex-
tended range brought by VI-Map when the distance between
the vehicle and infrastructure changes. Fig. 11 shows that
the fused HD map by VI-Map can provide double the range
than the online HD map only, even when the vehicles are
very close to the infrastructure (i.e., < 10m). This is because
the infrastructure can provide a wider field of view thanks
to its high altitude, and is less prone to occlusions than vehi-
cles. The extended range of HD map is the basis that VI-Map
can benefit many downstream tasks and improve safety in
autonomous driving.
5.3.2 Improve ride experience and traffic efficiency. VI-Map
provides vehicles with up-to-date map topology to support

downstream tasks such as decision making and motion plan-
ning.We evaluate how themap freshness affects the behavior
of autonomous vehicles, and what impacts and outcomes
these behaviors lead to. We construct a crossroad in CARLA,
in which vehicles with hard-coded AI use HD map and sur-
rounding information for autonomous driving. We perform
the following steps. First, all autopilot vehicles driving in
the town are equipped with offline HD maps provided by
CARLA. Second, we set a vehicle to stop suddenly to simulate
a lane-blocking scenario, which causes the road topology
to change and the offline HD map to become obsolete. We
record the data traces of the road section before and after the
topology change, including the infrastructure point clouds
and the timestamps, accelerations, and positions of all ve-
hicles passing through the road section. Third, we feed the
infrastructure point cloud into VI-Map to generate an up-
dated HD map. We manually update the topology of the
corresponding road section in the CARLA map and load the
newmap to all autopilot vehicles. Lastly, we let vehicles drive
with the new map and record the new data traces.

We calculate the ride comfort, average passing time, and
traffic throughput. Fig. 12 shows the average ride comfort
under the three situations. It shows that driving with an ob-
solete map can lead to a bad ride experience due to frequent
stop-and-go and sharp turns. VI-Map significantly improves
ride comfort by 3.9× compared with obsolete map, which
even matches the comfort level in non-accident scenarios.
This is due to the VI-Map’s ability to update the map in a
timely manner, allowing vehicles to make better decisions
and resulting in a smoother and more comfortable ride ex-
perience. Fig. 13 demonstrates the average vehicle passing
time and traffic throughput of the road section. Compared
with the outdated map, VI-Map reduces the time for vehicles
passing through problematic road sections to one-fifth and
improves traffic throughput by 2×.

5.4 Performance of VI-Map
5.4.1 Geometry Construction. We evaluate the geometry
construction of VI-Map on the real-world testbed. We com-
pare VI-Map with two baselines: (i) a state-of-the-art online
HDmap constructionmethod called HDMapNet with vehicle
data only[27]; (ii) A modified method based on HDMapNet,
in which we fuse the raw point cloud of the infrastructure to
the vehicle. Fig. 14 shows an example of map construction
results of an intersection using two baselines and VI-Map.
The blue and red splines as well as the green rectangles di-
rectly stem from the output of VI-Map. The orange arrows
are manually annotated to display the system’s generated
map topology, whose original form is a graph (Sec. 3.3). We
can find that the HD map generated by VI-Map provides a
wider range compared to vehicles only. Moreover, VI-Map
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A real-world scene HDMapNet [29] HDMapNet [29]
(with infrastructure)

VI-Map
(Ours) Ground truth

Infrastructure
Figure 14: HD mapping results of different methods in a real-world scene.

Table 3: HD map geometry accuracy on the real-world dataset. A higher 𝐼𝑜𝑈 (%) is better. A lower 𝐶𝐷 (𝑚) is better.

Method Road boundary Lane divider Crosswalks All classes Topology
𝐼𝑜𝑈 𝐶𝐷𝑃 𝐶𝐷𝐿 𝐶𝐷 𝐼𝑜𝑈 𝐶𝐷𝑃 𝐶𝐷𝐿 𝐶𝐷 𝐼𝑜𝑈 𝑃 𝑅 𝐼𝑜𝑈 𝐶𝐷𝑃 𝐶𝐷𝐿 𝐶𝐷

HDMapNet [27] 52.73 0.71 0.96 0.80 47.16 0.62 1.17 0.89 58.21 62.56 49.37 52.70 0.67 1.07 0.85 No
HDMapNet(with infr.) 63.52 0.53 0.86 0.77 79.65 0.46 0.87 0.72 70.23 82.26 74.94 71.13 0.50 0.87 0.75 No

VI-Map (Ours) 86.35 0.37 0.35 0.36 90.49 0.28 0.21 0.23 85.71 92.82 95.36 87.52 0.33 0.28 0.30 Yes
VI-Map w/o traj. 80.73 0.41 0.47 0.45 82.32 0.39 0.48 0.44 79.89 88.62 80.75 80.98 0.40 0.48 0.45 No

provides topology and a more accurate HD map than the
two baselines.
Then, we evaluate VI-Map on the real-world dataset. Ta-

ble 3 shows the results using the metrics defined in Sec. 5.1.2.
VI-Map outperforms the baselines in all metrics. In partic-
ular, VI-Map delivers 16%-35% higher 𝐼𝑜𝑈 compared with
HDMapNet. VI-Map achieves decimeter-level map precision
(i.e., 𝐶𝐷) with an average error of 0.3m. The results also
show that HDMapNet can be benefited from the infrastruc-
ture’s point cloud ( 20% improvement in 𝐼𝑜𝑈 ), thanks to its
unobscured field of view. However, VI-Map exhibit much bet-
ter performance than HDMapNet with infrastructure data,
which is around 60% improvement in𝐶𝐷 . This is because the
overlay of two single-frame point clouds from the infrastruc-
ture and vehicle is still too sparse to predict the location of
map elements precisely. VI-Map exploits accumulated point
clouds and precise trajectories, which reveal more details
and clues to locate map elements precisely.
We also observe that the infrastructure point cloud con-

tributes more significantly to the improvement of HDMap-
Net for lane dividers compared to road boundaries and cross-
walks. This is because the lane divider occupies a smaller area
and is mainly inferred by point intensity, overlaying infras-
tructure point cloud makes the intensity more pronounced
in the particular small area. Further, we find that the gap be-
tween𝐶𝐷𝑃 and𝐶𝐷𝐿 of VI-Map is much smaller (∼ 13%) than
the baselines. This is because the HD maps generated by the
two baselines can be incomplete due to sparse point clouds
and potential occlusions, while the complete HD map of
VI-Map can ensure consistency between the two metrics. Ad-
ditionally, we find that compared with Euclidean metric 𝐼𝑜𝑈 ,
VI-Map improves the two baselines more on Lagrangian met-
ric 𝐶𝐷 (35%-26% improvement vs. 65%-60% improvement).
This is because VI-Map generates continuous map elements
and fits them into vectorized shapes. In addition, we conduct

an ablation study to evaluate the effectiveness of trajectories
in map geometry construction. Table 3 also shows VI-Map
without the trajectory input, in which it exhibits 7% less in
𝐼𝑜𝑈 and 50% increase in 𝐶𝐷 . The result supports our design
that the accurate trajectories imply features for inferring
map geometry, and combining it with point cloud features
leads to better performance.
5.4.2 Topology Estimation. We evaluate the performance of
our update strategy of HD map topology by examining re-
sponse time, success time, and success rate as defined in Sec.
5.1.4. We compare our update strategy in Sec. 3.3 with two
baselines: (i) Fixed period of time: The topology is updated
with a fixed time period 𝑇 . (ii) Fixed number of trajectories:
The topology is updated after observing a fixed number of
additional trajectories 𝑛. For the former method, we set 𝑇 to
the traffic light cycle duration for intersections and 60 sec-
onds for straight roads. For the fixed number of trajectories
method, we set 𝑛 to 3 × Number of Lanes. It is important to
note that these values were chosen after an extensive search
to identify the best-performing parameters for each baseline
approach. As the performance of the map update can vary
with different road types and traffic conditions, we evaluate
under three different road conditions: a town center cross-
road, a T-junction on the outskirts of town, and a four-lane
straight road. Specifically, we simulate the same situation
as described in Sec. 5.3.2 under these three different road
conditions, five times each. Fig. 15 shows the performance of
VI-Map and the two baselines. Fig. 15(a) shows the response
time and the success time of the three update approaches.
VI-Map delivers the shortest success time under all road
conditions, though its response is not the fastest. The two
baselines respond quickly but take a much longer time to get
a correct topology update. VI-Map considers the topology
update per lane level, while the two baselines do not. Thus,
the trajectories collected under the two baseline strategies
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Figure 15: Topology estimation performance of differ-
ent update strategies at different road types.
can be unevenly distributed among lanes, with some lanes
not having any trajectories, which can result in update fail-
ure. Fig. 15(b) shows the success rate. VI-Map achieves an
average success rate of 84%, surpasses the two baselines by
a large extent of 30%-44%. Our update strategy integrates
both temporal and spatial changes to detect the change in
topology, and avoid false updates with cross-validation.
5.4.3 Map Fusion. We then experiment on the map fusion
method using the real-world dataset. This module runs on
the vehicle and is responsible for merging the infrastruc-
ture map with the vehicle map. We implement two baseline
methods by adapting the ideas of typical map merging meth-
ods in collaborative SLAM to our scenario: the probability
method [5, 26, 54] and the optimization method [4, 10, 34].
We rasterize our vectorized map to a grid map and follow the
implementation of these methods. Fig. 16 shows the perfor-
mance of the fused map obtained by applying these fusion
methods. The curves in Fig. 16 show the map IoU of the three
fusion methods under different vehicle localization errors,
respectively. The green bars in Fig. 16 present the distribu-
tion of GPS localization errors. The result shows that VI-Map
achieves more than 40% 𝐼𝑜𝑈 improvement over baselines
when the localization error is greater than 8m. As the local-
ization error increases, the performance of the two baselines
decreases sharply, whereas VI-Map maintains a map IoU
of over 78% for all tested localization errors. This is due to
the fact that VI-Map views the map as individual map ele-
ments and leverages instance-level correspondence of these
elements to accurately align and merge the two maps. In
contrast, the two baseline approaches view the map as a
whole and rely solely on the initial transformation to align
the two maps.

5.5 System Overhead
5.5.1 Each step delay on vehicle. We measure the run-time
latency of VI-Map’s individual steps on the vehicle and the
whole map fusion process. Since the runtime of map fusion
may be affected by the road complexity, i.e. the number of
map elements, we test on three different road types in the
real world. Fig. 17 shows the runtime of each step, where
the error bars indicate the lowest 5% and 95% of the runtime
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Figure 16: HD map 𝐼𝑜𝑈
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Figure 17: Run-time la-
tency of each step of VI-
Map on the vehicle at dif-
ferent road types.

across all frames with the same setting. The results show that
the overall on-vehicle compute time of VI-Map is less than
50ms under all road types, which can meet the stringent
real-time requirement of autonomous driving applications
(prediction [17], decision making [11], and motion planning
[50]). Therefore, VI-Map enables real-time HD mapping on
vehicles with the assistance of the roadside infrastructure.
The matching step takes half of the total compute time, as
it involves distance calculation between pairs of map ele-
ments. We note that this runtime can be further accelerated
by computing on GPU. The runtime of the transform and
align steps do not grow with the road complexity as they are
independent of the number of map elements.
5.5.2 Communication overhead. We compare the commu-
nication overhead of VI-Map with approaches that transmit
raw point cloud data (e.g., HDMapNet with infrastructure)
or rasterized map data [4, 10, 26, 54]. We measure the data
transmission time traces using the real-world testbed in Sec.
4, in which the vehicle and infrastructure communicate us-
ing an 802.11ac Wi-FI network with 80 MHz bandwidth. The
average data volume and the transmission time are shown in
Table 4. VI-Map transmits 71.2KB of vectorized map repre-
sentation (control points of splines, vertices of polygons, and
topology graph) in an average of 13.6ms. VI-Map reduces
the data transmission volume and time by about 42× and 40×
compared with transmitting raw point cloud data, and 22×
compared with transmitting rasterized map data. Therefore,
VI-Map can be deployed with a wide range of V2X networks
that even have low communication bandwidth.

5.6 System Robustness
As observed in Sec. 5.2, online HD maps can be significantly
affected by worn ground markings. In this section, we evalu-
ate VI-Map under different incompleteness of road markings.
Specifically, we mask different ratios of ground marking
points in the point cloud using CARLA. Table 5 shows that
as the incompleteness of ground markings increases, all met-
rics of VI-Map decreases slightly and steadily, maintaining
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Table 4: The average size of shared data and the trans-
mission time via an 802.11ac network.

Shared data type Shared data size Transmission time
Raw point cloud 2.92MB 544.6ms
Rasterized map 1.54MB 304.3ms

Vectorized map of VI-Map 71.2KB 13.6ms

Table 5: Accuracy of VI-Map’s HD map geometry with
different degrees of ground marking incompleteness.
Incompleteness of Boundary+Divider Crosswalks All classes
road markings 𝐼𝑜𝑈 𝐶𝐷𝑃 𝐶𝐷𝐿 𝐶𝐷 𝐼𝑜𝑈 𝑃 𝑅 𝐼𝑜𝑈

Mild (< 20%) 87.70 0.34 0.36 0.36 84.96 92.23 89.01 86.79
Moderate (∼ 50%) 84.75 0.38 0.45 0.41 79.38 89.61 86.12 82.96
Severe (> 90%) 82.65 0.40 0.46 0.43 75.62 85.98 78.57 80.31

an acceptable performance even under the most severe oc-
clusion, which still outperforms the baselines in Table 3 that
are without severe occlusion. Different from online map
construction methods that rely solely on sensor data (point
clouds), VI-Map additionally leverages the precise trajectory
observations of infrastructure and extracts unique features
valuable to map construction. Such a design makes VI-Map
resilient to various ground marking conditions as it is not
affecting trajectory features.

6 RELATED WORK
Online HD map construction methods. HDMapNet [27]
is the first work that introduces the problem of HD semantic
map learning. It encodes features from a single frame of
LiDAR point cloud and/or images from surrounding cameras,
and predicts semantic map elements in the bird’s-eye view.
STSU [9] proposes an end-to-end method that extracts local
road network graphs and detects objects simultaneously,
given only a front-facing camera image. VectorMapNet [29]
uses transformer modules to predict a sparse set of polylines
in the bird’s-eye view to model the geometry of HD maps.
These works all take onboard sensor observations as inputs
and thus are limited due to physical barriers such as obstacle
occlusion and limited sensing range.
Infrastructure-assisted vehicle perception.Recentworks
have shown the potential of infrastructure to enhance percep-
tion in autonomous driving. VI-Eye [21] proposes a semantic-
based point cloud registration method for merging vehicle
point cloud with infrastructure point cloud. VIPS [44] fuses
the object detection results of the infrastructure and vehicle
by leveraging a graph matching algorithm. Michael et al. [7]
leverage the infrastructure to detect, track and predict the
motion of vehicles to build an environment model, which is
transmitted to the vehicle for motion planning. Among these
works, infrastructures are primarily utilized for dynamic ob-
ject perception. VI-Map stands apart from these endeavors,
as its objective is to harness infrastructure to construct pre-
cise and current HD maps on the infrastructure side, thereby
assisting the generation of on-vehicle HD maps.

7 DISCUSSION
Scalability of VI-Map. VI-Map’s adaptability extends to
a diverse range of road types and traffic scenarios. First,
the BEV features used for inferring HD maps are low-level
features derived directly from raw data, without any assump-
tions made regarding road structures or lane numbers. Sec-
ond, heavy or light traffic condition primarily affects the
accumulation time of static point clouds and vehicle tra-
jectories. However, it does not harm the accuracy of the
constructed HD map.However, the scalability of VI-Map is
limited for inferring complex-shaped 3D map elements such
as traffic lights, fire hydrants, or bus stops. This limitation
is primarily attributed to the projection of 3D data onto
the 2D BEV space and the subsequent processing within
that domain, which results in the loss of information dur-
ing the dimensionality reduction process. Consequently, this
approach may not yield optimal performance when dealing
with intricate 3D map elements, as the finer details of their
3D geometry are lost during the projection.

Limitations and failure cases. VI-Map can achieve un-
satisfactory performance in adverseweather conditions, such
as rain, snow, and fog, due to the significant noises of data
from LiDARs. Furthermore, VI-Map may also encounter chal-
lenges in high-speed driving scenarios, as the increased ve-
locity leads to a significant drop in the quality of the point
cloud, thereby affecting the performance of VI-Map. Nev-
ertheless, the proposed Geometry Construction, Topology
Estimation, and Map Fusion can be modified and applied to
other sensing modalities like 3D cameras.

8 CONCLUSION
In conclusion, we present VI-Map, the first system that uti-
lizes the unique advantages of roadside infrastructure to
enhance on-vehicle HD maps by providing accurate and
timely infrastructure HD maps. We have implemented VI-
Map end-to-end and the experimental results show that VI-
Map enhances existing HD mapping methods in terms of
map geometry accuracy, map topology freshness, system
robustness, and efficiency.
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