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ABSTRACT
Infrastructure-assisted autonomous driving is an emerging para-
digm that expects to significantly improve the driving safety of
autonomous vehicles. The key enabling technology for this vision
is to fuse LiDAR results from the roadside infrastructure and the
vehicle to improve the vehicle’s perception in real time. In this
work, we propose VIPS, a novel lightweight system that can achieve
decimeter-level and real-time (up to 100ms) perception fusion be-
tween driving vehicles and roadside infrastructure. The key idea
of VIPS is to exploit highly efficient matching of graph structures
that encode objects’ lean representations as well as their relation-
ships, such as locations, semantics, sizes, and spatial distribution.
Moreover, by leveraging the tracked motion trajectories, VIPS can
maintain the spatial and temporal consistency of the scene, which
effectively mitigates the impact of asynchronous data frames and
unpredictable communication/compute delays. We implement VIPS
end-to-end based on a campus smart lamppost testbed. To evaluate
the performance of VIPS under diverse situations, we also collect
two new multi-view point cloud datasets using the smart lamppost
testbed and an autonomous driving simulator, respectively. Experi-
ment results show that VIPS can extend the vehicle’s perception
range by 140% within 58ms on average, and delivers a 4× improve-
ment in perception fusion accuracy and 47× data transmission sav-
ing over existing approaches. A video demo of VIPS based on the
lamppost dataset is available at https://youtu.be/zW4oi_EWOu0.
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1 INTRODUCTION
Autonomous driving is expected to revolutionize the transportation
system. However, recent pilot commercial deployments have caused
widespread concerns about the reliability and safety of existing
autonomous driving systems [13, 50]. In particular, many recent
accidents [51, 55] are caused by the delayed or erroneous detection
of victims by autonomous vehicles. The root cause of these accidents
lies in the limited visual perception range of a single car, even with
the most advanced vehicular sensors available today installed. It is
shown in [23] that physical barriers, such as obstacle occlusions and
limited sensing range in challenging weather conditions, can lead
to a 50% longer reaction time or even an immediate disengagement
of the autonomous driving system.

An emerging technical paradigm to address such challenges is
to leverage intelligent roadside infrastructures such as lampposts
equipped with sensors and compute units to improve the safety of
autonomous vehicles [22, 54]. The key enabling technology of such
an infrastructure-assisted autonomous driving paradigm is real-time
perception fusion, where the scene perception results of infrastruc-
tures are fused into the vehicle’s view in real time. As shown in
Fig. 1, the sensors (e.g., LiDARs and 2D/3D cameras) installed on
the roadside infrastructure can help the vehicle extend its percep-
tion range, for example, by sharing the detected objects, including
the vehicle (in the green box) invisible in the vehicle’s view. Such
real-time perception fusion capability greatly boots the accuracy
and reliability of a number of autonomous driving tasks, such as
path planning [41], localization [37], and navigation [43].

In this work, we focus on fusing LiDAR results from the road-
side infrastructure and the vehicle to extend the vehicle’s per-
ception in real time. Thanks to its high-resolution yet privacy-
preserving 3D data, LiDAR has been widely adopted by commercial
autonomous driving platforms [1, 6, 7] and intelligent roadside
infrastructures [4, 9]. However, current point cloud fusion tech-
niques [14, 17, 24, 26, 29, 32, 47] either require highly accurate
locations of vehicles or the transmission of raw point clouds from
the infrastructure to vehicles, which incurs significant overhead.
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Figure 1: Infrastructure-assisted perception fusion.

Moreover, the compute-intensive nature of 3D point cloud pro-
cessing is a major barrier to the deployment on existing roadside
infrastructures. For instance, existing metropolitan lampposts in
the US have a fixed power supply of around 8.5 kW/mile [5], of
which over 80% is used for lighting, especially during the night.
Retrofitting such large-scale public utilities with more power supply
or deploying new infrastructure is hence extremely costly. There-
fore, there still remains a significant gap between the vision of
infrastructure-assisted autonomous driving and the capabilities of
current perception fusion technologies based on existing roadside
infrastructures.

In this paper, we propose VIPS, a new Vehicle-Infrastructure
Perception fuSion system that accurately aligns objects detected
by the vehicle and the infrastructure to expand the vehicle’s per-
ception beyond its field of view in real time. VIPS can achieve high-
precision decimeter-level and real-time (up to 100ms) perception
fusion between driving vehicles and roadside infrastructure. Rather
than fusing bulky raw 3D point clouds, VIPS aims to match two
graphs built from lean and heterogeneous representations of the
objects detected by the vehicle and the infrastructure, respectively,
such as locations, semantics, sizes, and the spatial distribution of
objects. Moreover, VIPS tracks the object motion trajectories to
maintain the spatial and temporal consistency of the scene, which
effectively mitigates the impact of asynchronous data frames and
unpredictable communication/compute delays between vehicles
and roadside infrastructure.

Specifically, VIPS first detects vehicles and pedestrians from the
point clouds on both the infrastructure and vehicle independently.
Second, it tracks the identities and motion speeds of objects, with
which the vehicle rectifies the frames from the infrastructure to
time-align them with the vehicle’s own frames. Then, VIPS builds
two multi-affinity graphs and leverages an efficient graph matching
algorithm to identify the co-visible objects in the two perspectives.
Lastly, VIPS aligns all the objects into the vehicle’s view by finding
the transformation based on the co-visible objects.

Fundamentally different from the current wisdom of LiDAR per-
ception fusion which is based on a costly and rigid alignment of raw
3D point clouds, VIPS offers several key advantages: (i) VIPS utilizes
the (possibly limited) infrastructure’s compute/communication re-
sources efficiently since only a small amount of detection results
is broadcast to all passing vehicles. This leads to a highly scalable
infrastructure-assisted autonomous driving architecture. (ii) VIPS

leverages the spatial and semantic consistency of dynamic objects
from different perspectives, which achieves accurate real-time align-
ment without reliance on high-precision locations of vehicles. (iii)
VIPS exploits motion characteristics of the objects and thus main-
tains continuous representation, which enables VIPS to be robust
to communication dynamics and reduces the compute requirement
of both infrastructure and vehicles.

We have implemented VIPS on a real testbed consisting of a mod-
ified passenger vehicle and 16 smart lamppost nodes we deployed
on a university campus. We collect two new multi-view LiDAR
point cloud datasets using this testbed and a leading simulation
platform for autonomous driving [25], respectively. Our results
show that VIPS extends the vehicle’s perception range by 140%,
with an average perception fusion error of 0.6m, which is only 25%
of the results of state-of-art baselines. Moreover, VIPS only trans-
mits object detection results at 1.2KB per frame, which reduces the
data transmission volume by about 343× and 47× compared with
transmitting raw point cloud data and feature points, respectively.
Lastly, VIPS achieves an end-to-end system latency within 70ms,
which enables real-time perception fusion for autonomous vehicles.

2 RELATEDWORK
3D Object Detection & Tracking. 3D object detection is a core
component of autonomous driving systems. With the popularity
of LiDAR and stereo cameras, extensive research has focused on
3D object detection with point clouds. Extending the pioneering
work, including PointNet [46] and VoxelNet [67], many solutions
have been proposed to estimate and classify 3D bounding boxes
of objects in point clouds [38, 49, 59, 60]. However, 3D object de-
tection based on a single LiDAR on the vehicle often results in
unsatisfactory performance due to the limited perception range
and occlusions. Multi-object tracking (MOT) enables autonomous
route planning and navigation by localizing detected objects in
3D space and time. Based on early works on 2D image processing
[16, 56, 64], LiDAR-based tracking-by-detection [15, 28, 34, 61] has
gained popularity because of its high-ranging accuracy and robust-
ness in low-light conditions. However, most of them are based on
deep learning which incurs significant computational costs. In ad-
dition, designed for a single camera/LiDAR, they fail to address
the timing misalignment and inconsistent frame rates of multiple
LiDARs.
Point- and Feature-Level 3D Data Fusion. Several approaches
[26, 30, 35, 42] directly fuse raw point clouds from two sensors.
However, such point-level data fusions require transmitting high-
bandwidth raw point clouds. Several studies [20, 63] propose to
transfer segmented point clouds or even point cloud patches belong-
ing to pre-defined objects to reduce the overhead of communication.
However, these methods are not applicable in vehicle-infrastructure
scenarios because of the enormous difference in viewing angles and
the resultant small overlap of point clouds for the same object. In ad-
dition, point-wise registration incurs excessive computational over-
head on the vehicle and hence is ill-suited for real-time autonomous
driving. Recently, several solutions are proposed for feature-level
point cloud fusion that incurs a lower compute/communication
overhead. Some solutions [12, 21, 48] use decentralized SLAM for
feature point fusion. However, focused on 3D map construction
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and vehicle localization, they are not designed to capture moving
targets in the scene. Qi et al. [19] propose to detect dynamic ob-
jects cooperatively based on pre-defined shared features, which
require substantial overlaps of the objects’ point clouds. Moreover,
feature-level data fusion assumes the same feature representation
(e.g., keypoints or feature maps) from different sensors, which does
not apply to infrastructure-assisted driving applications.
High-Level 3D Data Fusion. Recently, a few approaches are pro-
posed to extract high-level results from multiple views to reduce
data transmission. Some of them focus on specific tasks like risk pre-
diction for driving [62] and vehicle re-identification [66]. However,
they require both sides to run the same downstream model, which
presents amajor barrier for real-world deployment in infrastructure-
assisted driving scenarios. In [17, 29, 54], several approaches can
fuse the 3D data that has high localization accuracy, which is not
practical in real-world settings. Arnold et al. [14] propose to share
aligned and merged object detection results from multiple infras-
tructures based on the prior knowledge of every sensor’s pose.
However, since localization errors of vehicles (e.g., based on GPS
and inertial sensors) can be up to several meters [37], this alignment
method cannot be applied to the vehicle-infrastructure perception
fusion. He et al. [32] propose the first vehicle-infrastructure point
cloud registration system that aligns saliency points from a pre-
defined set of objects (e.g., traffic signs and crosswalk lines) in the
two point clouds. However, this method targets point-level regis-
tration and thus requires transmitting raw point clouds between
vehicles and the infrastructure.

3 A MOTIVATIONAL CASE STUDY
This section presents a case study to understand the performance
of current perception fusion approaches. We generate numerical
results from CARLA [25], a popular autonomous driving simulator
that has been used in developing industrial autonomous vehicle
systems such as Apollo [6] and Autoware [7]. We use the APIs
provided by CARLA to create customized road maps, traffic flow,
sensor locations, vehicle speed, etc. CARLA then generates high-
quality and realistic sensor data based on physics laws and sensor
data (e.g., LiDAR point cloud) with Unreal Engine [8], an advanced
3D graphic rendering engine. Our testbed evaluation based on real-
world datasets is presented in Section 6.

3.1 Benefits of Perception Fusion
Fig. 2(a) shows an example of a crossroad simulated by CARLA.
Two LiDARs are installed on the autonomous vehicle (1.6m in
height) and on a roadside infrastructure (4m in height), respectively.
We set the LiDARs with the same parameters (32 channels, 360◦
field of view (FOV)) used in several popular benchmark datasets,
including KITTI [31] and Nuscenes [18]. We use a traffic manager
to simulate traces of the vehicles and pedestrians, and record all
the point cloud data continuously. Fig. 2(b) shows a bird-eye view
of the point clouds from the vehicle (i.e., dots in blue) and the
infrastructure (i.e., dots in brown). The point clouds are fused using
the ground truth locations generated by CARLA. Blue and green
boxes show the detected objects in the views of the vehicle and the

infrastructure, respectively. When the two pedestrians are about
to cross the road, vehicle E turns left while the vehicle ahead is
still passing the intersection. Due to the occlusion, the vehicle
cannot see the two pedestrians (circle a and b) and two vehicles
(box C and E), which may result in a traffic accident. In contrast,
the roadside infrastructure has a broader field of view and is less
prone to occlusion than vehicles. Fig. 2(b) shows that almost all
targets (in blue boxes) in the scene can be detected in the point
cloud from the infrastructure, which complements the vehicle’s
field of view well. Therefore, a real-time scene perception system
like this is highly desirable to prevent accidents caused by human
factors like violations of traffic rules [53].

3.2 Point/Feature-level Fusion Performance
To understand the performance of current perception fusion ap-
proaches, we deploy several existing perception approaches for
measurements. We first evaluate a state-of-the-art point-based reg-
istration algorithm [35] on the simulated road trace. Fig. 2(c) shows
that the average fusion error is ∼ 2mwhile the maximum error can
be up to ∼ 6m, where the error bars indicate the 5th and 95th per-
centiles. This is because the point-based registration highly relies on
substantial overlapping areas between the two point clouds, and per-
forms poorly in our evaluation due to the serious interference of the
non-overlapped contents. Moreover, the end-to-end fusion pipeline
would require the transmission of raw point clouds between ve-
hicle and infrastructure, point-wise registration, and substantial
subsequent processing, whose excessive compute/communication
overhead poses a major challenge in meeting the stringent real-time
requirement of autonomous driving applications. For instance, the
Velodyne HDL32E LiDAR [2] generates point clouds at a frame rate
of 10Hz, yielding a data volume of about 40Mbps.

As discussed in Section 2, feature-level point cloud fusion can
reduce the overhead of transmitting and registering raw data clouds.
However, its performance is highly susceptible to the interference
of the non-overlapped areas. As illustrated in Fig. 2(b), the merged
point cloud contains a very limited amount of overlapped points
from the infrastructure and vehicle point clouds. Fig. 2(c) presents
the performance of a state-of-the-art feature-based fusion algorithm
[48]. Compared with the point-based method, the average error of
perception fusion is slightly increased, and the overall errors are
more evenly distributed. This is because the extraction of features
can filter out some non-characteristic parts in the point cloud,
resulting inmore consistent performance. However, the 3m average
perception error is not applicable for the safety-critical applications
in autonomous driving. Moreover, such methods lack generality
because they require all agents to adopt the same feature extraction
strategy.

In addition to the point- and feature-level perception fusion,
there are a few recent approaches [14, 54] using object-level features
from the raw data. However, they rely on the centimeter-level
localization accuracy of the vehicles. We collect a real-world GPS
data trace on campus with a commercial GPS and use a professional
RTK-GNSS unit as ground truth. We run the object-level fusion
approach [14] on the real GPS data trace and present the perception
error in Fig. 2(c). The average error is around 4m, which cannot
meet the requirement of localization for autonomous driving.
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4 SYSTEM DESIGN
4.1 System Overview
The design objective of VIPS is to achieve high-precision (i.e., sub-
meter level) and real-time (up to 100ms) perception fusion between
driving vehicles and roadside infrastructure. Moreover, VIPS should
be highly robust to different sensor data rates, dynamics in vehicle-
infrastructure communication, and unpredictable errors in object
detection and vehicle localization. As a result, the perception fu-
sion results of VIPS can benefit various downstream tasks for au-
tonomous driving, such as accident alarming, route planning, and
vehicle localization.

To achieve these design objectives, VIPS exploits highly efficient
matching of graph structures that encode objects’ lean represen-
tations as well as their relationships, such as locations, seman-
tics, sizes, and spatial distribution. As a result, VIPS enables high-
precision perception fusion only using compact heterogeneous
semantic and spatial features, without precise shape and surface
geometry that are costly to extract, which is in sharp contrast to
existing point cloud registration approaches. Moreover, by leverag-
ing the tracked object motion trajectories, VIPS can maintain the
spatial and temporal consistency of the scene, which effectively mit-
igates the impact of asynchronous data frames and unpredictable
communication/compute delays between vehicles and roadside
infrastructure.

As shown in Fig. 3, VIPS fuses the perceptions from the vehicle
and infrastructure through four data processing steps, which are
described as follows: 1) First, VIPS detects locations, orientations,
and labels of 3D objects in the point clouds from the infrastructure
and the vehicle separately. A multi-object tracking (MOT) algo-
rithm is designed to handle missing frames caused by inconsistent
frame rates and packet loss. 2) Second, VIPS rectifies the frames
from the infrastructure based on their motion speeds to deal with
inconsistent frame rates or missing packets. 3) Third, VIPS builds
two multi-affinity graphs based on the object information (e.g., ob-
ject’s locations, classes, and identifiers). An efficient graphmatching
approach is developed to identify the matched pairs of co-visible
objects. 4) Lastly, based on the object pairs, the object alignment
module estimates the transformation and fuses the objects into the
vehicle’s view.

4.2 3D Object Detection and Tracking
We employ a 3D object detector to extract objects from the point
clouds collected by LiDARs on the infrastructure and vehicle, re-
spectively. The results are represented by labeled 3D bounding
boxes, which are consistent with mainstream 3D object detec-
tion benchmarks in traffic scenarios [18, 31]. Our 3D object de-
tector is based on Pointpillars [38], a state-of-the-art 3D object
detection framework adopted by many industry-level autonomous
driving platforms [6, 7]. This detector detects each input point
cloud and extracts the 3D information of objects in the frame.
Specifically, for each frame 𝑡 , the output of 3D detector is a set
of 𝑛𝑡 detections 𝐷𝑡 =

{
𝐷1
𝑡 , 𝐷

2
𝑡 , · · ·, 𝐷

𝑛𝑡
𝑡

}
. Each detection 𝐷

𝑗
𝑡 , where

𝑗 ∈ {1, 2, · · ·, 𝑛𝑡 }, is represented as a tuple (𝑐, x, b, 𝜃, 𝑠), includ-
ing class label 𝑐 denoting vehicle or pedestrian, location center
x = (𝑥,𝑦, 𝑧) in the 3D space, object’s bounding box size b = (𝑙,𝑤, ℎ),
heading angle 𝜃 and confidence score 𝑠 . Note that the infrastructure
and the vehicle perform the object detection independently, so the
outputs of detectors on both sides are based on their respective
LiDAR coordinate systems. We denote the detection sets of infras-
tructure and vehicle at time 𝑡 as 𝐷𝑖𝑛𝑓 ,𝑡 and 𝐷𝑣𝑒ℎ,𝑡 , respectively.

Lightweight 3D MOT. Most state-of-the-art 3D MOT methods
adopt machine learning techniques incurring excessive computa-
tional costs [15, 28], which is not applicable in autonomous driving
with real-time requirements. Inspired by [58], we adopt a classical
approach that integrates the Kalman filter [33] and the Hungarian
method [36] to yield a satisfactory tracking performance with low
latency. Fig. 4 shows the processing pipeline of the multi-object
tracking. The details of the tracking procedure are described as
follows: We add an object velocity vector v = (𝑣𝑥 , 𝑣𝑦, 𝑣𝑧) and a
tracking ID𝑢 into the each object detection (i.e.,𝐷) to formulate the
state of a tracked object (trajectory) as a tuple 𝑇 = (𝑐, x, b, 𝜃, 𝑠, v, 𝑢).
In every frame, the state of the trajectories from the previous frame
𝑇𝑡−1 =

{
𝑇 1
𝑡−1,𝑇

2
𝑡−1, · · ·,𝑇

𝑚𝑡−1
𝑡−1

}
will be propagated to frame t based

on the linear motion model in the Kalman filter. The predicted tra-
jectories𝑇𝑝𝑟𝑒𝑑 are then associated with the detection𝐷𝑡 . The associ-
ation is a bipartite graphmatching problem, which can be efficiently
solved with the Hungarian algorithm [36]. Then we can obtain the
associated trajectories𝑇𝑚𝑎𝑡𝑐ℎ and detections𝐷𝑚𝑎𝑡𝑐ℎ , together with
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the new detections 𝐷𝑛𝑒𝑤 . Lastly, we update the state of each trajec-
tory in 𝑇𝑚𝑎𝑡𝑐ℎ based on its corresponding detection in 𝐷𝑚𝑎𝑡𝑐ℎ and
add new trajectories based on new detections 𝐷𝑛𝑒𝑤 . As a result,
the infrastructure and the vehicle respectively obtain the trajec-
tories they detect in frame 𝑡 as 𝑇𝑖𝑛𝑓 ,𝑡 =

{
𝑇 1
𝑖𝑛𝑓 ,𝑡

,𝑇 2
𝑖𝑛𝑓 ,𝑡

, · · ·,𝑇𝑚𝑡

𝑖𝑛𝑓 ,𝑡

}
and 𝑇𝑣𝑒ℎ,𝑡 =

{
𝑇 1
𝑣𝑒ℎ,𝑡

,𝑇 2
𝑣𝑒ℎ,𝑡

, · · ·,𝑇𝑛𝑡
𝑣𝑒ℎ,𝑡

}
. Once obtaining the state of

detected objects (e.g., 𝑇𝑖𝑛𝑓 ,𝑡 at time 𝑡 ), the infrastructure transmits
it to the vehicle.

4.3 Motion-Aware Frame Rectification
Ideally, the vehicle continuously aligns 𝑇𝑖𝑛𝑓 ,𝑡 and 𝑇𝑣𝑒ℎ,𝑡 that have
the same timestamp 𝑡 . However, as shown in Fig. 5(a), the frames
from the infrastructure may not always be aligned with the vehicle
frame in time. There are two major reasons: (i) synchronization error.
The standard sampling rate of LiDARs is 10Hz, which can cause
the frames from infrastructure and vehicle to be misaligned by tens
of milliseconds, shown as the left frame from the infrastructure in
Fig. 5(a). (ii) frame missing. Due to limited computing resources, the
infrastructure may perform object detection at a lower frequency
than autonomous vehicles. In addition, there may be occasional
packet loss in data transmission from the infrastructure to the
vehicle. Therefore, the vehicle may miss some frames from the
infrastructure, shown as the right frame from the infrastructure in
Fig. 5(a). We address the above challenges by exploiting the motion
speed of objects obtained from the MOT. Specifically, we extend the
propagation of the object poses from previous frames to the current
frame in the MOT to estimate their poses in future frame time. For
instance, the vehicle obtains the object information in frame 𝑡 as
𝑇𝑣𝑒ℎ,𝑡 , and the latest data from infrastructure is 𝑇𝑖𝑛𝑓 ,𝑡−𝛿 , where 𝛿
denotes the time difference caused by the factors mentioned above.
Then, we estimate 𝑇 𝑒

𝑖𝑛𝑓 ,𝑡
with the same linear motion model in the

MOT:
x𝑒𝑡 = x𝑡−𝛿 + 𝛿 · v𝑡−𝛿 (1)

Tinf,t-δ
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Figure 5: An illustration of frame errors and motion-aware
frame rectification.

where the x𝑡−𝛿 and v𝑡−𝛿 denote the 3D location and velocity of the
object in 𝑇𝑖𝑛𝑓 ,𝑡−𝛿 , respectively. Here we exploit a constant velocity
model to reduce the computation and communication overhead,
based on the assumption that the motion state of objects does not
change drastically within milliseconds. Fig. 5(b) shows that the
frame rectification can enable the vehicle to perform the perception
fusion with the time-aligned frames from the infrastructure despite
significant frame errors between detection results from the vehicle
and infrastructure.

4.4 Co-Visible Object Matching
The fusion/alignment of two object sets (i.e.,𝑇𝑖𝑛𝑓 ,𝑡 and𝑇𝑣𝑒ℎ,𝑡 ) relies
on the objects co-visible to the vehicle and infrastructure. However,
one major challenge is the object sets only contain the objects of
interest (i.e., vehicles and pedestrians) represented by compact se-
mantic and spatial information, without precise shape and surface
geometry. Therefore, we design an efficient graph-based co-visible
object matching approach to address the limited consensus informa-
tion from two object sets, which is shown in Fig. 6. In particular, we
formulate the identification of co-visible objects as a graph match-
ing problem [39, 65]. Unlike the point cloud registration methods
that require rigid point displacements, graph-based representation
enables the encoding of highly heterogeneous information about
objects and their relationships such as object locations, classes,
sizes, and spatial structure of object distribution.

4.4.1 Graph Definition. A graph G is characterized by (V, E,A)
whereV, E,A are the set of nodes, edges, and attributes, respec-
tively. Each edge 𝑒𝑖 𝑗 ∈ E that connects node 𝑣𝑖 and 𝑣 𝑗 is assigned an
attribute 𝑎𝑖 𝑗 , and node attributes are denoted as 𝑎𝑖𝑖 for node 𝑣𝑖 . We
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Figure 6: Illustration of co-visible object matching and alignment.

generate two graphs G𝑉 = (V𝑉 , E𝑉 ,A𝑉 ) and G𝐼 = (V𝐼 , E𝐼 ,A𝐼 )
based on object sets 𝑇𝑣𝑒ℎ,𝑡 and 𝑇𝑖𝑛𝑓 ,𝑡 , with |V𝑉 | = |𝑇𝑣𝑒ℎ,𝑡 | = 𝑛 and
|V𝐼 | = |𝑇𝑖𝑛𝑓 ,𝑡 | = 𝑚. The nodes and edges in each graph denote
objects and their pair-wise relationships. We aim to establish an as-
signment Ω =

{
(𝑣𝑖 , 𝑣𝑖′ ) | 𝑣𝑖 ∈ V𝑉 , 𝑣𝑖′ ∈ V𝐼

}
between the nodes of

two graphs, so that a criterion over the matched nodes and edges is
optimized. As a result, the objects represented by thematched nodes
indicate the intersection of the two object sets, i.e., the co-visible
objects.

Let w ∈ {0, 1}𝑛𝑚×1 be an indicator vector of the assignment
Ω where w𝑖𝑖′ = 1 if (𝑣𝑖 , 𝑣𝑖′ ) ∈ Ω and 0 otherwise. We build a
symmetric positive square matrix M ∈ R𝑛𝑚×𝑛𝑚 , called affinity
matrix, where M𝑖𝑖′ ;𝑗 𝑗 ′ measures howwell the edge 𝑒𝑖 𝑗 matches with
edge 𝑒𝑖′ 𝑗 ′ . Specifically, the diagonal entries denote node-to-node
affinities whereas the off-diagonal entries represent edge-to-edge
affinities. The affinities are measured according to the attributes of
nodes or edges (c.f., Section 4.4.2). Then, the matching problem can
be solved by finding the optimal assignment w∗ to maximize the
overall affinity score as follows:

w∗ = argmax
w

w⊤Mw, 𝑠 .𝑡 . Cw ≤ 1, w ∈ {0, 1}𝑛𝑚×1, (2)

where the binary matrix C ∈ R𝑛𝑚×𝑛𝑚 encodes one-to-one mapping
constraints: ∀𝑖′ ∑

𝑖 w𝑖𝑖′ ≤ 1 and ∀𝑖 ∑
𝑖′ w𝑖𝑖′ ≤ 1.

4.4.2 Multi-Attribute Affinity Measure. The heterogeneous infor-
mation in 𝑇𝑖𝑛𝑓 ,𝑡 and 𝑇𝑣𝑒ℎ,𝑡 is encoded into the node and edge at-
tributes in the graphs, with whichwemeasure the affinities between
nodes and edges and build the affinity matrix M.
Node-to-Node Affinity. We define the attribute 𝑎𝑖𝑖 of node 𝑣𝑖
based on the object’s class 𝑐𝑖 , bounding box size b𝑖 , tracking ID
𝑢𝑖 and location x∗

𝑖
, which is shown in Fig. 6(b). Here we trans-

form the object location from x𝑖 which is under the LiDAR coor-
dinate to x∗

𝑖
under the world coordinate based on the location of

the vehicle or infrastructure. We measure multiple affinities be-
tween two nodes 𝑣𝑖 ∈ V𝑉 and 𝑣𝑖′ ∈ V𝐼 based on their attributes.
Specifically, we measure the semantic affinity and size affinity as
𝑓
(1)
𝑖𝑖′ = 𝑒𝑞𝑢𝑎𝑙 (𝑐𝑖 , 𝑐𝑖′ ) and 𝑓

(2)
𝑖𝑖′ = exp(−𝜆1∥b𝑖 − b𝑖′ ∥2), where the

𝑒𝑞𝑢𝑎𝑙 function measures the similarity of the object classes. Here as
we only focus on two types of objects, the 𝑒𝑞𝑢𝑎𝑙 function outputs 1
if the semantic labels are the same and 0 otherwise. To take advan-
tage of the tracking information, we define 𝑓

(3)
𝑖𝑖′ = 𝑒𝑥𝑖𝑠𝑡 ( [𝑢𝑖 , 𝑢𝑖′ ])

as the trajectory affinity, where 𝑒𝑥𝑖𝑠𝑡 (𝑢𝑖 , 𝑢𝑖′ ) represents whether
the nodes with tracking ID 𝑢𝑖 and 𝑢𝑖′ are matched in the last
frame pair. In addition, we measure the distance of the two ob-
jects under the world coordinate to define the location affinity as
𝑓
(4)
𝑖𝑖′ = exp(−𝜆2



x∗
𝑖
− x∗

𝑖′


). 𝜆1 and 𝜆2 are scale factors, which can

be flexibly adjusted according to application scenarios. Here we em-
pirically set them to 0.5 and 0.1 as in [65]. We combine the affinities
as:

M𝑖𝑖′ ;𝑖𝑖′ = 𝑓
(1)
𝑖𝑖′ 𝑓

(3)
𝑖𝑖′

[
𝜇1 𝑓

(2)
𝑖𝑖′ + 𝜇2 𝑓

(4)
𝑖𝑖′

]
, (3)

which is the diagonal entry M𝑖𝑖′ ;𝑖𝑖′ in the affinity matrix. Here
𝜇1 and 𝜇2 are weight factors, which are set to 0.5 to balance the
weights of different affinities. Note that as the world coordinates
of objects (e.g., x∗

𝑖′ ) are derived from GPS or the cellular network
infrastructure which usually have errors up to several meters [37].
Therefore, in Eqn. 3 we linearly sum up the location affinities. As a
result, when the location error is large, the value of 𝑓 (4) diminishes
thus the overall affinity is dominated by the other affinities.
Edge-to-Edge Affinity. Fig. 6(b) also illustrates the affinities be-
tween edges. Specifically, the attribute of edge 𝑒𝑖 𝑗 indicates the
relationship between nodes 𝑣𝑖 and 𝑣 𝑗 , which are defined based on
their semantic label pair c𝑖 𝑗 = (𝑐𝑖 , 𝑐 𝑗 ), distance 𝑑𝑖 𝑗 =



x𝑖 − x𝑗



, and
relative heading angle 𝜃𝑖 𝑗 = 𝜃𝑖 − 𝜃 𝑗 . By exploiting the property
of the LiDAR point cloud which captures the real distance infor-
mation in the scene, the distance and relative orientation between
two objects from different viewpoints are consistent without per-
spective distortions. For two edges 𝑒𝑖 𝑗 ∈ E𝑉 and 𝑒𝑖′ 𝑗 ′ ∈ E𝐼 , we
measure their semantic affinities using 𝑔

(1)
𝑖𝑖′, 𝑗 𝑗 ′ = 𝑒𝑞𝑢𝑎𝑙 (c𝑖 𝑗 , c𝑖′ 𝑗 ′ ),

where the 𝑒𝑞𝑢𝑎𝑙 function is the same as in the node-to-node affin-
ity measurement. The distance and relative orientation affinities
are measured with 𝑔

(2)
𝑖𝑖′, 𝑗 𝑗 ′ = exp(−𝜆3 (𝑑𝑖 𝑗 − 𝑑𝑖′ 𝑗 ′ )2) and 𝑔

(3)
𝑖𝑖′, 𝑗 𝑗 ′ =

exp(−𝜆4
��sin(𝜃𝑖 𝑗 ) − sin(𝜃𝑖′ 𝑗 ′ )

��), respectively, where 𝜆3, 𝜆4 are scale
factors and are set to 0.5 and 0.1 as in [65]. The edge affinities are
combined in:

M𝑖𝑖′ ;𝑗 𝑗 ′ = 𝑔
(1)
𝑖𝑖′, 𝑗 𝑗 ′

[
𝜇3𝑔

(2)
𝑖𝑖′, 𝑗 𝑗 ′ + 𝜇4𝑔

(3)
𝑖𝑖′, 𝑗 𝑗 ′

]
, (4)

where we sum up 𝑔
(2)
𝑖𝑖′, 𝑗 𝑗 ′ with 𝑔

(3)
𝑖𝑖′, 𝑗 𝑗 ′ as the relative pose affinity

between the edges, 𝜇3 and 𝜇4 are weight factors and are set to 0.5
to balance the weights of affinities.
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4.4.3 Graph Matching. The graph matching problem subject to the
one-to-one mapping constraint (i.e., Eqn. 2) is known to be NP-hard.
Here we employ a computationally efficient method [39] where
the mapping constraint is relaxed to a normalized format and the
optimization problem is as follows:

w∗ = argmax
w

w⊤Mw, 𝑠 .𝑡 . ∥w∥2 = 1. (5)

Since M is symmetric and non-negative, the problem in Eqn. 5 can
be solved by computing the leading eigenvector of M, which is
denoted as w∗. In this design, the most time-consuming operation
in the graph matching process is constructing the affinity matrix M,
which has a time complexity of 𝑂 (𝑛2). In contrast, the exhaustive
search approach needs to measure the matching quality for every
searched matching, whose complexity is 𝑂 (𝑛!). Moreover, as w∗

is non-negative and ∥w∗∥2 = 1, the elements of w∗ represent the
node-to-node matching scores that necessarily lie in the interval
[0, 1]. Therefore, the matched node pairs set Ω can be determined
by setting a threshold and then maximizing the overall matching
score, which can be solved with the Hungarian algorithm [36]. Here
we set the threshold to 0.5 to ensure that matching results have the
highest score to identify co-visible objects reliably. When there are
no matched nodes, which means that none of the objects detected
by the vehicle and the infrastructure are co-visible, the vehicle relies
only on its own scene perception without utilizing the detection
results from the infrastructure.

4.5 Object Alignment
After the graph matching, we have the overlapped nodes corre-
spondence Ω between two graphs G𝑉 and G𝐼 (shown in Fig. 6(c))
which can be mapped to the co-visible object sets 𝑇𝑐

𝑖𝑛𝑓 ,𝑡
⊆ 𝑇𝑖𝑛𝑓 ,𝑡

and 𝑇𝑐
𝑣𝑒ℎ,𝑡

⊆ 𝑇𝑣𝑒ℎ,𝑡 , where |𝑇𝑐
𝑖𝑛𝑓 ,𝑡

| = |𝑇𝑐
𝑣𝑒ℎ,𝑡

| = |Ω|. Note that the
bounding box and spatial pose for each co-visible object in 𝑇𝑐

𝑣𝑒ℎ,𝑡

and 𝑇𝑐
𝑖𝑛𝑓 ,𝑡

are available, we can obtain the transformation matrix T
that aligns the detection results from the infrastructure to the vehi-
cle by registering two small point sets consisting of the bounding
box corners. Since registration corresponds to a linear least-square
problem, we use Singular Value Decomposition (SVD) for the align-
ment. In particular, instead of treating the corners of each object’s
bounding box equally, we assign the weights to objects based on
the detection confidence and matching scores in graph matching.
Thus, the transformation matrix T is robust to errors in object de-
tection and co-visible object matching. Eventually, the detection of
infrastructure 𝑇𝑖𝑛𝑓 ,𝑡 can be transformed to vehicle’s view with T
and aligned with the vehicle’s own detection 𝑇𝑣𝑒ℎ,𝑡 (as shown in
Fig. 6(d)).

5 TESTBED AND DATASETS
We have built a real-world testbed consisting of smart lamppost
nodes and a modified vehicle as shown in Fig. 7. We collect a new
dataset on two roads (∼ 1.75 km) with 16 self-deployed smart lamp-
posts. Fig. 7(a) shows one of the two roads and the setup of the
lamppost nodes. Each lamppost node is equipped with two LiDARs
at the height of (∼ 3.5m) facing opposite directions of the road.
We built two platforms to collect vehicle point clouds on the road:
a small mobile cart installed with a LiDAR, and a real passenger

Table 1: Summary of two new datasets.

Datasets length
(km)

road
types

#object
per frame

ground
truth

#point
cloud pairs

Campus dataset 1.75 two-way 1∼5 ✓ 1,428

CARLA dataset 5.78 single/two-way,
intersection 1∼15 ✓ 6,523

car (see Fig. 1 and 7(c)). For both platforms, a LiDAR is mounted
at about ∼ 1.7m above the ground. We use Livox Horizon LiDAR
[11] on both smart lampposts and vehicles, which has an FOV of
82◦ and outputs 24,000 points per frame (∼ 300KB).

Existing LiDAR datasets for autonomous driving [18, 31] have
point cloud data from the vehicle’s view only, which cannot be used
in infrastructure-assisted perception fusion. Therefore, we collect
two new datasets, one on a university campus testbed and one
generated by the CARLA simulator [25]. Both datasets contain point
cloud pairs from both the vehicle and the roadside infrastructure.
Table 1 summarizes the two datasets. The details are presented as
follows.

(a) Campus smart lamppost testbed we installed.

(b) 3D high-precision map for ground truth.

(c) Test vehicle.

(d) Mobile cart.

LiDAR

LiDAR

Laptop
LiDAR

TX2

WiFi

Figure 7: A real-world smart lamppost testbed we deployed
for data collection and system evaluation.

5.1 Real-world Campus Dataset
During the collection of the campus dataset, the vehicle speed is
5m/s on average (up to around 8m/s, i.e., 30 km/s) because of the
speed limit on campus roads. We collect the vehicular location
traces with a commercial GPS unit. To obtain the ground-truth
location and orientation between the vehicle and infrastructure
LiDARs, we build a high-precision 3D map (Fig. 7(b)) for the tested
roads by repeatedly scanning the roads with LiDAR and merging
the point clouds offline using commercial software. We also use
a mobile cart shown in Fig. 7(d) for repeated data collection. We
align each frame with the 3D map [48] to get the ground-truth pose
and location. Note that such a 3D map construction is often used
for generating commercial HD maps, which is extremely costly
and labor-intensive and thus cannot be used for real-time data
fusion. Moreover, we manually annotate the objects (vehicles and
pedestrians) in the point clouds using [40] for the training data. The
campus dataset covers 1.75 km, which is 1,428 point cloud pairs.
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Figure 8: An example scene in CARLA dataset. The yellow
dots denote the locations of roadside infrastructure.

5.2 CARLA Simulation Dataset
We render a larger dataset using CARLA [25]. Compared to the
campus dataset with only simple road types and monotonic traffic
flow, the CARLA dataset includes diverse road types and traffic
densities (Fig. 8). Specifically, the road types include straight roads
and intersections with two-way single or two lanes. We configure
three different levels of traffic conditions according to the aver-
age number of objects within 50m range of the vehicle: light (less
than 4), medium (4 to 8), and heavy (more than 8). Besides, we set
the vehicle speed up to 20m/s (i.e., 72 km/h), which is consistent
with the regular speed on urban roads. We configure 20 roadside
infrastructure nodes at different locations on the CARLA map, each
installing one LiDAR at the height of 4m. Meanwhile, a LiDAR is
present on a vehicle’s roof, around 1.65m above the ground. All the
LiDARs on the vehicle and the infrastructure are configured with
the same parameters (e.g., 32 channels, 360◦ FOV) used in main-
stream autonomous driving datasets [18, 31]. CARLA generates the
vehicle locations with errors that are extracted from the real-world
GPS data traces from Fig. 2(c). The CARLA dataset covers 5.78 km,
which is 6,523 point cloud pairs.

6 IMPLEMENTATION AND EVALUATION
In this section, we conduct extensive experiments to validate the
performance and advantages of VIPS. We first describe the sys-
tem implementation and experimental settings in Section 6.1 and
define evaluation metrics in Section 6.2. Second, we present an
end-to-end implementation of VIPS based on the smart lamppost
testbed on campus in Section 6.3. Third, we evaluate the application-
level performance of VIPS for autonomous vehicles in Section 6.4,
which shows that VIPS significantly extends the vehicle’s percep-
tion distance and provides them with information about the oc-
cluded objects. In addition, we evaluate the performance of VIPS in
Section 6.5 and Section 6.6. Lastly, we validate VIPS’s robustness in
diverse road scenarios and also in the presence of substantial errors
in vehicle localization and frame time in Section 6.7.

6.1 Implementation and Experiment Setup
We implement VIPS on the smart lamppost testbed on a university
campus. Each lamppost equips an NVIDIA Jetson TX2 for comput-
ing and an 802.11ac WiFi router for wireless communication with
vehicles (see Fig. 7(a)). The test vehicle (see Fig. 7(c)) carries a laptop
to run VIPS code. The laptop equips an Intel i7 2.60GHz CPU and
an NVIDIA RTX 2070 GPU. We train the detection models with
the OpenPCDet platform [52] using two datasets from Section 5

on 4 NVIDIA TITAN Xp GPUs. We set the detecting radius of our
model to 50m on the horizontal plane, and 2m on the vertical plane.
Such detection range settings follow the mainstream benchmarks
[18, 31] for 3D object detection in autonomous driving. Moreover,
we export the trained models in ONNX format [10] for inference
using TensorRT [3] on the Jetson TX2.

6.2 Evaluation Metrics
6.2.1 RRE, RTE, and the success rate. We adopt the relative rotation
error (RRE) and relative transnational error (RTE) defined in the
KITTI benchmark [31] to measure the errors between the estimated
transformation T𝑒 (c.f. in Section 4) and the ground-truth trans-
formation T𝑡 . Specifically, RRE is defined as: 𝑅𝑅𝐸 =



𝐹 (𝑅−1
𝑡 𝑅𝑒 )




1,

where 𝑅𝑡 and 𝑅𝑒 are the rotation matrices ofT𝑡 andT𝑒 , respectively.
𝐹 (·) denotes the function that calculates three Euler angles from
the rotation matrix. RTE is defined as: 𝑅𝑇𝐸 = ∥𝑡𝑡 − 𝑡𝑒 ∥2, where
𝑡𝑡 and 𝑡𝑒 are the translation vectors of T𝑡 and T𝑒 , respectively. In
addition, following the previous work [32], we define the success
rate as the ratio of the estimated transformations whose RTEs are
below 2m.

6.2.2 Absolute trajectory error. We adopt the absolute trajectory
error (ATE) from [45] to measure the absolute distances between es-
timated and ground-truth trajectories. Specifically, ATE is defined
as the root mean square error from trajectory matrices: 𝐴𝑇𝐸 =

( 1𝑛
∑𝑛
𝑖=1 ∥𝐸 (𝑡𝑟𝑎(T𝑒 ), 𝑡𝑟𝑎(T𝑡 ))∥

2)
1
2 , where𝑛 denotes the frame num-

ber. 𝑡𝑟𝑎(·) transforms the transformations to trajectory matrices,
while 𝐸 (·, ·) calculates the errors between the estimated and ground-
truth trajectories.

6.2.3 Recall and Precision. We evaluate the detection accuracy of
our perception fusion approach using recall and precision rates. A
positive detection means that its intersection over union (IoU) of
the bounding boxes of the transformed object and its ground truth
is larger than 50%. The recall and precision are defined as: 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃/(𝑇𝑃 + 𝐹𝑁 ), 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑃), where TP, FN, FP are
true positives, false negatives and false positives respectively. The
recall rate describes how accurate VIPS’s results are. The precision
rate denotes how much the user can trust VIPS in its fusion results.

6.3 End-to-end System Evaluation
As shown in Fig. 7, we collect data traces using the test vehicle
equipped with a top-mounted LiDAR and the mobile cart platform
to evaluate the end-to-end system performance of VIPS. The data
collection is based on two roads (i.e., around 180m and 350m with
the installation of the smart lampposts) during a period of three
weeks. A video clip of the real-time perception fusion of the test
vehicle using object detection results is available1. Fig. 9 shows a
sample of results on the 180m road segment with 5 smart lampposts.
The upper figure shows the estimation of the test vehicle’s trajectory
by VIPS. The color of the dots denotes the ATE. The average ATE
is around 0.65m, and over 80% of the trajectory is estimated within
a 1m error, which demonstrates that VIPS fuses the perception
accurately. The lower figure in Fig. 9 measures the end-to-end
latency of VIPS. VIPS takes an average of 58ms per frame, which
means that VIPS can well support tasks in real-time autonomous
1https://youtu.be/zW4oi_EWOu0
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Figure 9: An End-to-end evaluation on a road segment. Above:
errors of the test vehicle’s trajectory estimated by VIPS. Bot-
tom: the end-to-end latency of VIPS during the driving trace.

driving. In addition, we observe that the accuracy and the end-
to-end latency of VIPS vary across lampposts. For example, VIPS
generates larger trajectory errors and smaller perception fusion
latency when assisted by the lamppost V. This is because there are
fewer objects in the lamppost and vehicle’s views when the vehicle
passes by the lamppost. We evaluate the influence of the traffic
density in Section 6.5 and Section 6.7.

6.4 Micro Benchmarks
Autonomous vehicles can benefit from VIPS which provides ve-
hicles with more information about objects on the road. Fig. 10
shows the images and point clouds of two scenes. (a) and (b) are
captured from the CARLA dataset, in which most occluded objects
(the red boxes) are in distance from the ego vehicle (i.e., the test
vehicle). In this case, the vehicle can better plan its route with the
fused perception from the infrastructure. (c) and (d) are from the
campus dataset, in which most objects are close to the ego vehicle.
The vehicle can leverage the relative location and the motion of the
occluded vehicle for accident alarming to improve driving safety.
Another key advantage of VIPS is that the ego vehicle only receives
object detection results from the infrastructure without the raw
point clouds (colored in blue in Fig. 10(b, d)). The figures show that
VIPS can: a) enable the detection of occluded/distant objects; and
b) fuse the object detection from both views.

We evaluate the additional detected objects with the help of VIPS.
Fig. 11 shows the cumulative number of detected objects within the
distance from the ego vehicle in the CARLA dataset. For example,
within the range of 120m, there are 9 and 13 detected objects on
average from the views before and after the perception fusion,
respectively. Since the typical detection range of vehicles is 50m,
VIPS can extend the perception range of the ego vehicle to 120m,
which enables the vehicle to see significantly further. Meanwhile,
VIPS can provide four more detected objects on average to support
downstream autonomous driving. In addition to the perception
extension, VIPS can provide important information about nearby
occluded objects when the range is less than 50m,which can be used

Table 2: The average size of shared data per frame and the
transmission time measured on an 802.11ac network.

Shared data type Shared data size (KB) Transmission time (ms)

Raw point cloud 412.4 31.2
Feature points 56.9 5.4

Detection results in VIPS 1.2 0.17

by safety-critical applications like accident alarming and pedestrian
intrusion detection. Besides, as the increased perception capability
can vary with the relative positions of the ego-vehicle and the
infrastructure, we also count the average number of objects the
vehicle can detect at different distances from the infrastructure.
Fig. 12 shows that vehicles can benefit more from the infrastructure
when they are far from it. However, VIPS can increase the number of
objects detected by vehicles evenwhen the vehicles are very close to
the infrastructure (i.e., <10m) since the LiDAR on the infrastructure
is higher off the ground, thus less susceptible to occlusions.

6.5 Real-Time Performance
We evaluate the runtime of VIPS’s individual components and the
whole system separately. Fig. 13 shows the runtime of each com-
ponent under different traffic densities using the CARLA dataset.
The error bars indicate the 5th and 95th percentiles of the runtime
across all frames with the same setting. Since the computational
time of motion-aware rectification is trivial, we include it in the
overall time. The results show that the overall computational time
of VIPS is less than 70ms under all traffic conditions, which is less
than the frame rate of LiDAR (i.e., 10Hz). Therefore, VIPS enables
a real-time perception of surrounding objects by vehicles with the
assistance of the roadside infrastructure. The 3D object detection
takes around half of the total computational time, which only de-
pends on the size of the point cloud. We note that this runtime
can be further reduced with the development of more efficient 3D
object detection algorithms. While the runtime of the other three
modules grows with the number of objects, the total runtime is
always less than 40ms under heavy traffic.

We also compare the communication overhead of VIPS with the
approaches that transmit raw point cloud data or feature points.
Here we adopt a state-of-the-art SLAM algorithm LIO-SAM [48]
to extract the feature points. We measure the data transmission
time traces outdoor under an 80MHz 802.11ac network with a WiFi
router wire connected to a Jetson TX2 (to simulate the infrastruc-
ture) and an 802.11ac-compliant laptop moving at a speed of 5m/s
(to simulate the vehicle). We use the existingWiFi on the testbed for
evaluations although VIPS can broadcast perception results from
the infrastructure to the vehicle via other V2X protocols. The aver-
age data volume and the transmission time per frame are shown
in Table 2. VIPS transmits 1.2KB of object detection and tracking
results at 10Hz in an average of 0.17ms, which is negligible in the
overall system overhead. VIPS reduces the data transmission vol-
ume and time by about 343× and 183× compared with transmitting
raw point cloud data, and 47× and 32× compared with transmitting
feature points. Therefore, VIPS can be deployed with a wide range
of V2X networks that even have low communication bandwidth.
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(a) An image collected by vehicle in CARLA. (b) Point clouds and fused detection. (c) An image collected by vehicle on campus. (d) Point clouds and fused detection.

Figure 10: Two scenes from CARLA and campus datasets. Green and red boxes are objects from the vehicle’s view and the
infrastructure’s view, respectively. The yellow and blue dots are point clouds from the vehicle and infrastructure, respectively.
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6.6 Accuracy of Perception Fusion
We conduct extensive accuracy evaluation on VIPS from three
aspects: object alignment, trajectory estimation, and object percep-
tion.

6.6.1 Object alignment Accuracy. As mentioned in Section 4, VIPS
computes the transformation T between the perspectives of the
vehicle and the infrastructure by aligning the co-visible objects,
based on which the vehicle can fuse the detection results from
the infrastructure into its scene perception. Existing approaches
obtain such a transformation by registering the raw point clouds or
extracted feature points. We evaluate the object alignment accuracy
of VIPS by comparing it with four baselines, including three point-
based algorithms: PP-ICP [42], Filter-REG [30], FAST-GICP [35],
and one feature-based registration approach LIO-SAM [48]. Other
recent works, such as [26, 32], rely on pre-defined regularly shaped

Table 3: Alignment performance comparison between VIPS
and existing algorithms. The left and right numbers denote
the results on the CARLA dataset and the campus dataset,
respectively.

Type Methods RRE (◦) RTE (m) Success rate (%) Time (ms)

Point-based
[42] 0.61/3.69 1.28/1.59 79.7/77.9 351.3/98.7
[30] 3.88/6.72 3.41/1.69 64.7/61.5 113.2/119.6
[35] 0.41/1.29 1.24/0.49 86.5/89.3 63.3/72.2

Feature-based [48] 0.57/3.66 1.11/1.29 82.6/84.5 82.7/51.6
VIPS 0.39/0.92 0.28/0.44 97.8/93.4 56.3/49.4

objects such as traffic signs, crosswalks, etc., which are not always
available in general road scenarios.

We conduct the evaluation based on the RRE, RTE, and success
rate metrics using both the CARLA and campus datasets. The re-
sults are shown in Table 3. VIPS outperforms the existing methods
on both of the two datasets, despite that VIPS only utilizes the
object detection results from the point clouds. This is because VIPS
extracts the overlaps, i.e., the co-visible objects in the two point
clouds, and obtains the correspondence of them, which removes
the interference from non-overlapped parts of the two point clouds.
Although the 3D object detection results may contain errors, the
interference of these errors can be reduced by leveraging all the co-
visible objects according to their detection confidence and matching
scores, as mentioned in Section 4.5. Another key insight in Table 3
is that the runtime of VIPS is less than all the existing approaches.
In addition, the output of VIPS is the fused object detection re-
sults, which can be directly used by the downstream applications
of autonomous driving based on object detection results, including
motion prediction, driving decision making, etc. In contrast, the
existing approaches only align two point clouds together while the
vehicle still needs to conduct object detection on the merged point
cloud for the driving applications.

6.6.2 Estimated Trajectory Accuracy. We also evaluate the accu-
racy of the vehicle trajectory, which indicates the performance of
the vehicle fusing perception information from the infrastructure
in continuous time. The trajectory is estimated with the transfor-
mation T in every frame and the position of the fixed infrastructure.
Here we compare VIPS with two baselines including a point-based
approach [35] and a feature-based approach [48] using both the
CARLA and campus datasets. Fig. 14(a) and 14(c) show the ATE of
trajectories estimated by the three approaches on a sample sequence
in the CARLA and campus datasets, respectively. VIPS outperforms
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(b) CDF of ATE in CARLA data.
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(c) ATE of a campus trace.
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(d) CDF of ATE in campus data.

Figure 14: Evaluations of trajectory estimation. (a, c): The
ATE of VIPS and two baselines based on the CARLA and the
campus datasets, respectively. (b, d): The CDF of ATE of VIPS
and two baselines on the CARLA and the campus datasets,
respectively.

the baselines over almost the entire sequence, especially at the
beginning and the end, where the vehicle enters and leaves the
area around the infrastructure. The point-based and feature-based
approaches perform poorly due to limited FOV overlaps when the
vehicle is far from the infrastructure, where the non-overlapped
portions of the point clouds can significantly affect the alignment
accuracy. The point-based method performs similarly or even better
than VIPS only occasionally when the FOVs are mostly overlapped.
However, the point clouds from the infrastructure and the vehicle
have significant viewing angle differences in most cases. VIPS over-
comes this challenge by conducting the alignment only according
to the extracted co-visible objects. We also estimate all the trajec-
tories of both the CARLA and campus datasets with VIPS and the
two baselines. Fig. 14(b) and 14(d) show the cumulative distribu-
tion functions (CDFs) of ATE. The average errors of trajectories
estimated by VIPS are about 0.5m and 0.6m on the CARLA and
campus datasets, respectively, while the baselines can achieve such
accuracy only around 25% of the time. In summary, VIPS enables
the vehicle to accurately fuse perception information from smart
lampposts across the two datasets.

6.6.3 Object Perception Accuracy. In order to validate VIPS at the
application level, we evaluate the accuracy of VIPS perceiving ob-
jects on both the CARLA and the campus datasets. We compare
VIPS with the point-based and feature-based baselines used earlier,
we also present the vehicle’s object detection result without infor-
mation from the infrastructure. Note that the baseline approaches
are designed for point cloud registration instead of object percep-
tion. Here we use their output transformation to align the object
detection results and compare themwith the output of VIPS. Table 4

Table 4: Object perception recall and precision of VIPS and
existing approaches (IoU threshold is set to 0.5). The left and
right numbers denote the results on the CARLA dataset and
the campus dataset, respectively. “N/A” means no object is
detected.

Methods Near (<50m) Far (>50m)
Recall (%) Precision (%) Recall (%) Precision (%)

Only vehicle 80.2/82.6 85.8/80.4 N/A N/A
Point-based 86.3/85.2 83.9/87.1 50.3/78.2 63.5/67.8
Feature-based 83.7/83.5 81.8/85.5 37.8/41.9 46.9/37.5

VIPS 87.7/90.1 86.7/89.9 69.8/84.9 75.5/84.0
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Figure 15: Recall (left) and Precision (right) of VIPS’s percep-
tion fusion under different localization errors (IoU threshold
is set to 0.5).

presents recall and precision of object perception results. We divide
them into two parts: the recall and precision of objects within or
out of the vehicle’s detection range (50m), denoted by “Near” and
“Far”, respectively. For the “Far” group, the vehicle’s perception of
objects is entirely dependent on the detection results from the in-
frastructure, and VIPS significantly outperforms baseline methods
because it achieves a more accurate alignment between the vehi-
cle and infrastructure perspectives. As shown in the “Near” group,
VIPS also improves the vehicle’s perception within its detection
range because VIPS helps the vehicle perceive occluded objects and
corrects part of the vehicle’s 3D object detection errors with the
detection result from the infrastructure.

6.7 Robustness of VIPS
6.7.1 Vehicle localization error. To validate VIPS’s robustness to the
vehicle localization error, we compare VIPS with the localization-
based perception fusion based on the GPS traces in the campus
dataset. The red and blue curves in Fig. 15 show the recall and
precision of VIPS and the localization-based perception fusion under
different localization errors, respectively. The green bars in Fig. 15
present the distribution of GPS localization error. The performance
of the localization-based method drops sharply with the increase of
the localization error, while the recall of VIPS is over 75% and the
precision is over 78% across all localization errors. This is because
VIPS exploits the information that is consistent over the vehicle’s
location (such as relative positions and semantic labels of objects)
to match co-visible objects from the vehicle’s and infrastructure’s
views. Hence, VIPS is robust to localization errors.
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Figure 16: Recall (left) and Precision (right) of VIPS’s percep-
tion fusion under different frame errors (IoU threshold is set
to 0.5).

Table 5: Recall and precision of object perception in different
road types and traffic conditions.

Road type Traffic condition Recall (%) Precision (%)

Intersection Light 78.5 83.1
Heavy 83.4 83.7

Straight road Light 78.4 78.8
Heavy 87.2 87.5

6.7.2 Frame errors between vehicle and infrastructure. As described
in Section 4.3, VIPS adopts MOT to obtain the motion informa-
tion of the detected objects, thus rectifying the frames from the
infrastructure to align the time with the vehicle’s frames. Such
a design makes VIPS resilient to fluctuating network conditions
and computing resources while the vehicle is moving. To assess
how tolerant VIPS is for frame errors, we compare the recall of
object perception of VIPS with and without the frame rectification
using the campus dataset, which is shown in Fig. 16. The result
shows that the performance of object perception drops significantly
when fusing the objects from the vehicle and the infrastructure
with misaligned frames. However, with the frame rectification, the
vehicle can utilize the time-aligned information from the infrastruc-
ture to achieve a robust perception fusion when the error is up to
0.5 s, which is 5× of the frame interval. This evaluation confirms
VIPS’s robustness to frame errors that may be caused by the missing
frames or the misalignment due to different frame rates, packet
loss, or constrained computing resources on the infrastructure.

6.7.3 Road types and traffic conditions. We evaluate the accuracy
of VIPS in different road types and traffic conditions using the
CARLA dataset. The results are presented in Table 5. VIPS performs
well on both intersections and straight roads (e.g., VIPS can achieve
over 78% recall and precision under light traffic on a straight road),
which shows that VIPS can adapt to different types of the spatial
distribution of objects on the roads. We also note that the accuracy
of VIPS perceiving objects drops slightly in light traffic compared to
that in heavy traffic, which is due to the fewer co-visible objects in
light traffic. This is acceptable because, in light traffic, the vehicles
are less susceptible to occlusions and are less reliant on detection
results from the infrastructure.

7 DISCUSSION
Resource Limitation of Intelligent Infrastructure. In this work,
we assume vehicles are equipped with sufficient computing re-
sources, whereas intelligent infrastructures are relatively resource-
constrained. This is consistent with the fact that the existing road-
side infrastructures (e.g., lampposts and traffic lights) have limited
power supply. Therefore, in the design of VIPS, the infrastructure
processes its own data and broadcasts the detection results to ve-
hicles. However, if the infrastructure has sufficient resources, the
vehicle can offload the frame rectification (Section 4.3) and per-
ception fusion (Section 4.4-4.5) to the infrastructure. In this case,
the vehicle transmits its detection results to the infrastructure and
receives the fused perception in real time. Moreover, the infrastruc-
ture can analyze the occlusions by locating and tracking the vehicle
and hence remove the static objects invisible to a vehicle, which
further reduces the overhead of graph matching.
Inter-Vehicle Perception Fusion. Although VIPS focuses on the
perception fusion between the vehicle and infrastructure, our core
idea can be applied to inter-vehicle perception fusion as well. For
example, a vehicle can receive detection results from surrounding
vehicles and fuse them into its field of view with the graph represen-
tations. While the FOV overlaps between the vehicles are usually
more limited than in the vehicle-infrastructure scenario, the system
can leverage multiple vehicles or leverage other sources of infor-
mation (e.g., precise vehicle localization) to facilitate perception
fusion.
Network Settings. There exist a variety of communication tech-
nologies between vehicles and roadside infrastructures, such as
cellular [12, 17], WiFi [63], millimeter-wave [57], 802.11p [27], and
802.11bd [44]. We note that the design of VIPS (c.f. Section 6.5)
does not require a specific network setting and can greatly reduce
the network bandwidth for data exchange between vehicles and
roadside infrastructures.

Moreover, in the further, we will further optimize the object
detection model and improve the security of VIPS. A model with
higher precision or more classes can benefit the detection of co-
visible objects and thus boost the performance of VIPS. While we
assume that the data transmission between the infrastructure and
the vehicle is trusted, we will investigate security issues like adver-
sarial examples for infrastructure-assist autonomous driving, with
a focus on perception fusion.

8 CONCLUSION
In this paper, we present VIPS, a novel system that fuses the ob-
jects detected by the vehicle and the infrastructure to expand the
vehicle’s perception in real time, which facilitates a number of au-
tonomous driving applications. We implement VIPS end-to-end and
evaluate its performance on two self-collected datasets. The experi-
ment results show that VIPS outperforms the existing approaches
in accuracy, robustness, and efficiency.
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