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ABSTRACT
Head-mounted wearables are rapidly growing in popularity. How-
ever, a gap exists in providing robust voice-related applications
like conversation or command control in complex environments,
such as competing speakers and strong noises. The compact design
of HMWs introduces non-trivial challenges to existing speech en-
hancement systems that use microphone recording only. In this
paper, we handle this problem by using bone vibration conducted
through the head skull. The principle is that the accelerometer is
widely installed on head-mounted wearables and can capture the
clean user’s voice. Hence, we develop VibVoice, a lightweight multi-
modal speech enhancement system for head-mounted wearables.
We design a two-branch encoder-decoder deep neural network
to fuse the high-level features of the two modalities and recon-
struct clean speech. To address the issue of insufficient paired data
for training, we extensively measure the bone conduction effect
from a limited dataset to extract the physical impulse function for
cross-modal data augmentation. We evaluate VibVoice on a dataset
collected in real world and compare it with two state-of-the-art
baselines. Results show that VibVoice yields up to 21% better perfor-
mance in PESQ and up to 26% better performance in SNR compared
with the baseline with 72 times less paired data required. We also
conduct a user study with 35 participants, in which 87% participants
prefer VibVoice compared with the baseline. In addition, VibVoice
requires 4 to 31 times less execution time compared with base-
lines on mobile devices. The demo audio of VibVoice is available at
https://www.youtube.com/watch?v=8_-s_C_NGRI.
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1 INTRODUCTION
Head-mounted wearables, or HMWs, are smart devices that can be
put on users’ heads or ears, which include True Wireless Stereo
(TWS) earphones, VR/AR headsets, and smart glasses. HMWs are
equipped with several sensors and run various applications like
VR/AR, motion recognition, and voice assistants. Represented by
TWS earphones like the Apple Airpods series, the shipment of
HMWs has grown as the largest category among all wearable de-
vices, estimated to be more than 273 million units worldwide in
2023 [39]. Manufacturers are adding various functions to HMWs.
For example, some HMWs (especially earphones and headphones)
support active noise cancellation (ANC) to improve the listening
experience. On the speech side, voice-related applications using
HMW s microphones are among the most frequently used.

For example, an increasing number of people make phone calls
with TWS earphones. Through voice commands, users can also
interact with voice assistants (e.g., Siri and Alexa). However, the
speech quality on HMWs is unsatisfactory due to the following
challenges: First, most HMWs adopt omnidirectional microphones
that can receive audio from any angle, leading to extra environ-
mental noises. Second, although most HMWs are equipped with
multiple microphones to form an array and remove noises based on
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VibVoice: Speech Enhancement with
Bone-Bonducted Vibration and Voice 
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Figure 1: VibVoice enhances speech quality of head-mounted
wearables by extracting the user’s clear voice from the bone-
conducted vibrations.

beamforming, the microphones on HMWs are too close to achieving
a satisfying performance. Third, the speech audio is significantly
suppressed when it reaches the HMWs as the HMWs are usually
far away from the user’s mouth. Lastly, the worldwide pandemic
forces people to wear masks, which can further reduce the audio
intensity.

Various approaches have been developed for speech enhance-
ment. Signal processing-based methods [12] remove noises based
on their statistical models. However, these approaches cannot han-
dle complex environments. Microphone beamforming [17, 54] re-
moves noises based on their directions. But they fail to distinguish
the speaker’s voice and noise when the microphones are placed
too close. Several research [9, 41, 56] adopt deep neural networks
(DNNs) to improve speech quality. However, their performance
varies when the domain changes. Except for the audio-only solution,
several works leverage other modalities like contact sensors [14],
vibration sensor [25], camera [13], mm-Wave Radar [21, 22, 29], ul-
trasonic sensing [42, 55], and Lidar [36], which introduce additional
hardware requirements or user overhead to existing HMWs.

Inertial Measurement Unit (IMU) is a common sensor on most
HMWs and can capture audio with a direct connection with the
speaker [7, 46]. Since HMWs are well connected to the user’s head,
the IMU accelerometer can sense the vibrations caused by the
speaker’s voice through the skull’s bone conduction. The bone-
conducted vibration contains speech from the user only without
environmental noises or voices. However, the accelerometer on
HMWs has a low sample rate (e.g., 1.6 kHz) due to the limited
size and energy consumption, which is not enough to recover the
human’s voice (e.g., up to 3.4 kHz [48]).

We propose VibVoice, the first end-to-end multi-modal speech en-
hancement system for HMWs using the bone conduction from the
vibration to the audio. The design of VibVoice fits mobile devices,
considering the on-device sensor, execution latency, and commu-
nication overhead. VibVoice exploits the complementary charac-
teristics of the two modalities: the acceleration has a low sample
rate covering a partial audible spectrum but with no environmen-
tal noises. The microphone has a high sample rate covering the
whole audible spectrum but is mixed with ambient voice and noises.
Such a combination of modalities provides a stable reference for
extracting the target speech. VibVoice uses a DNN to reconstruct
clean speech with two encoders and decoders for processing the

data from two modalities, respectively. VibVoice faces three major
technical challenges as follows:
Lack of paired labeled acceleration and audio. Collecting a
paired multi-modal dataset is labor-intensive. Although there are
public datasets of either acceleration or audio, none has the paired
data on head-mounted wearables. Collecting such a paired dataset
on a large scale can introduce excessive overheads, such as recruit-
ing diverse volunteers and recording hundreds of hours of audio
with annotations.
Fusion of data with different modalities and sample rates.
Microphone audio has much richer information than acceleration
data due to the higher sample rate. As a result, the DNN is prone to
overfitting and may ignore the data input of acceleration. Therefore,
during the training of DNN, we require a special training strategy
to avoid overfitting and two dedicated losses to balance the weights
of the two modalities.
Practical concern for deployment. Deploying deep learning
speech enhancement in the real world is non-trivial due to the
variance among people’s voice and bone conduction channels. Even
though some users may tolerate a rapid data collection phase before
use, the amount and quality of the collected data are not guaranteed
for training a high-performance model.

To overcome the above challenges, we design VibVoice based
on our extensive measurements of the bone-conduction effects on
real-world data. We conclude our contributions as follows:

• We propose a novel estimation approach to model Bone Con-
duction Function with a limited dataset to augment paired
acceleration and audio based on a large public audio dataset.
The augmented paired dataset can be used for model train-
ing.

• We design a two-branch DNN that a) recovers the speech-
related information from the acceleration signal with a low
sample rate, b) extracts the clean speech from contaminated
audio with the help of the acceleration signal, and c) has a
lightweight design and can be run on the mobile device with
low latency.

• We collect a two-modal dataset and evaluate VibVoice on
a self-designed platform, EarSense, equipped with an ac-
celerometer and a microphone to acquire paired acceleration
and audio data simultaneously. The dataset and the design
of data collector are open-sourced.

We evaluate VibVoice on a paired acceleration and microphone
from 15 volunteers. We test VibVoice’s performance on the offline
synthetic noise dataset and the concurrent noise dataset in various
scenarios. VibVoice achieves the best performance with 31 times
less latency on mobile devices than the two strong baselines. In
addition, data augmentation can reduce the requirement of paired
data by more than 72 times. We recruit 35 volunteers for a user
study in which VibVoice is preferred by 87% users compared to the
baseline.

2 RELATEDWORK
Speech enhancement is an essential function in voice communica-
tion that has received extensive attention. We categorize existing
speech enhancement methods based on the input modalities, i.e.,
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audio-only, multi-modal, as well as works sensing acoustic signals
with other modalities.

2.1 Audio-only Speech Enhancement
2.1.1 Model-driven. Traditional speech enhancement either relies
on assumptions of stationarity of signals, independence of speech,
noise in the time-frequency domain [12], or multiple omnidirec-
tional microphones (e.g., a microphone array) to improve audio
quality. The microphone array leverages the difference of arrival
times (known as beamforming) toward each microphone to deter-
mine the direction of the speaker for speech enhancement [17, 54],
and speech separation [19, 53]. However, those approaches cannot
adapt to dealing with dynamic noises without prior knowledge.

2.1.2 Machine Learning. Recent studies adopt DNN [9, 41, 56] for
speech enhancement. The deep structure of neural networks can
capture the inherited features of the target voice and potential
noises based on a large training dataset. DNN-based methods work
on both single-channel audio [41] and multi-channel audio with
arbitrary microphones layouts [56]. ClearBuds [9] uses a DNN to
process the stereo audio recorded by customized earbuds, which
causes excessive communication overhead. ClearBuds filters noises
based on the angles of sources, which does not work when a com-
peting speaker stands at the same angle as the speaker. Although
audio-only deep learning speech enhancement achieves good per-
formance, they rely on the training data domain and fail to enhance
the speech quality with slim-volume audio.

2.2 Multi-Modal Speech Enhancement
Speech events involve the motions of several articulatory organs,
such as the tongue, teeth, lips, jaw, and facial muscles, which can
be leveraged for speech enhancement.

2.2.1 Audio and Visual. Researchers in [13, 26] leverage the video
from a camera in the environment to correlate the audio and visual
for speech enhancement and separation. These approaches leverage
deep learning and cross-modal embeddings to extract the target
speech from noises. However, a visual sensor like a camera is not
always available in daily usage.

2.2.2 Audio and Wireless. The authors in [42, 55] use the smart-
phone’s speaker to transmit an inaudible acoustic signal (i.e., higher
than 17 kHz) and simultaneously receive the echo reflected by mov-
ing lips, which can be used to enhance the noisy audio. [22, 29]
use coupled mmWave and microphone recording for speech recog-
nition rather than enhancing general speech contents. However,
a mmWave radar is bulky and not common on HMWs, and the
ultrasonic solution requires the user to fix the phone toward their
mouth.

2.2.3 Audio and IMU. Some recent works have exploited the noise-
less speech information from a bone conduction sensor or the ac-
celerometer and the microphone recording for multi-modal speech
enhancement. [45] proposes a multi-modal DNN for speech en-
hancement trained by a self-collected dataset in Mandarin. How-
ever, the bandwidth of the vibration sensor is around 5 kHz, which
is much higher than the one available on commercial devices [37].
SEANet [43] uses a DNN to augment acceleration from audio with

the same transformation among all users. However, the diverse
bone shapes can lead to different transformations and thus affect
the generalizability. In addition, both works [43, 45] focus on the
design of deep learning models and fail to evaluate the systems
with real-world noises and unseen users.

2.3 Sensing Acoustic Signals
IMU or piezoelectric sensor [25] can be installed on commercial de-
vices to measure the contact sound, including unvoiced sound [18],
breathing sounds [14], and eavesdropping smartphone/VR headset
speaker [7, 38, 40, 46]. Although various contact sensing technolo-
gies are developed for acoustic sensing, they can classify keywords
and events only rather than reconstructing the full-spectrum audio.
Previous works exploit remote acoustic sensing by correlating with
several non-acoustic sensors (e.g., geophones, accelerometers, and
gyroscopes) [15], using the LiDAR on a vacuum robot to predict
acoustic signals from the vibrations on the surrounding surfaces
[36], or leveraging a mmWave Radar to achieve authentication [21].
However, they can only detect a given set of speech contents like
digits and music. Measurements in [4] show that smartphone’s
motion sensor can only capture air-conducted acoustic vibrations
remotely in limited use cases.

3 BACKGROUND
3.1 Audio Recording on HMWs
Although voice-related applications have been studied for decades,
they usually exhibit unsatisfactory performance due to the follow-
ing limitations. First, to save space and cost, most microphones
installed on HMWs are omnidirectional instead of directional mi-
crophones due to their bulkiness and limitations in general use cases
such as recording environmental sounds (e.g., Logitech 650e [24],
around 100 USD). The omnidirectional microphones pick up audio
from any angle, so they inevitably record the interference signals,
especially the speech of a competing speaker close to the target
user. Second, although the latest HMWs usually equip multiple mi-
crophones for beamforming, the compact layout of the microphone
array can impede the acoustic beamforming since the audio from
different sources arrives at the microphones with only a minor time
difference. Specifically, the microphone array’s interval is much
smaller than 𝜆𝑚𝑖𝑛/2, while the 𝜆𝑚𝑖𝑛 is the minimum wavelength of
the interested frequency band. Third, the microphones on HMWs
are farther away from the user’s mouth than wired earphones or
standalone microphones since they are usually inserted into the
ears or mounted around the eyes. Therefore, the received intensity
of the speech audio can be significantly suppressed due to the slim
air transmission. Lastly, the worldwide pandemic forces people to
wear facial masks, which can significantly reduce speech volume
by up to 7dB [32]. Hence, seeking another available transmission
channel for robust speech sensing is desirable.

3.2 Bone-Conducted Vibrations
Existing commercial headphones leverage bone conduction [50]
for inner ear hearing assistance. In this paper, we focus on the
transmission from the vocal cord to the head skull, which can be
detected by the contact microphone [51]. The noise-less feature
of bone conduction sound has been discovered [43] with a bone



MobiSys ’23, June 18–22, 2023, Helsinki, Finland L. He, H. Hou, S. Shi, X. Shuai, and Z. Yan

IMU

AirPods

(a) EarSense with an Airpods Pro.

EarSense

Raspberry Pi

EarSense

(b) Test Setup.

Figure 2: EarSense is an open-sourced data collector attach-
able to commercial HMWs for vibration sensing.

conduction microphone. The professional bone-conducted micro-
phone has also been applied in extremely harsh environments like
battlefields or underwater applications [1, 2]. However, there are
still challenges to leveraging it for speech enhancement on HMWs.
Firstly, as depicted in [8, 52], the propagation through the head
is complicated, resulting in an unstable response even for the ex-
act location. Secondly, although a professional bone-conducted
microphone can capture a clear voice at a high sample rate, they
are too expensive (e.g., 60 US dollars [1, 2]) and not available on
commercial HMWs. The current commercial-level vibration sensor
may not provide sufficient sample rate and precision, leading to
frequency aliasing and a bad signal-noise ratio. Some approaches
tackle the problems by duplicating the signals of low-frequencies
to high-frequency domain [11], utilizing the time stretching to
generate high-frequency harmony [27], or also trying to unfold
the acceleration signals from low sample rate using deep learning
[46]. However, these approaches are far from achieving satisfying
performance because the speech in high frequency contains extra
information than that in low frequency. As a result, a simple recov-
ery on the high-frequency part can amplify the noise of acceleration
and degrade the quality of the generated audio.

4 METHODOLOGY
In this section, we first develop EarSense, an open-source wearable
platform that has a similar setup to current commercial HMWs for
data collection in Section 4.1. Then, we exploit the bone-conducted
vibrations and the audio signals recorded by EarSense under var-
ious settings in Section 4.2. Finally, we overview the design of
our proposed system in Section 4.3, introduce Bone Conduction
Function and multi-modal network in Section 4.4 and Section 4.5,
respectively.

4.1 EarSense: An Open Source Data Collection
Platform for HMWs

Most commercial HMWs do not provide APIs to collect raw accel-
eration data. Recently, Apple provided APIs [6] to collect motion
data from AirPods earphones at 100Hz, which is too low for speech
recording and doesn’t fully utilize commercial IMU. Hence, it is
desirable to develop a new sensing platform that can: a) collect the
acceleration and acoustic data synchronously at a sample rate to
recover speech information; b) have direct contact with the user’s
head like HMWs; c) have compatibility to test with existing com-
mercial devices.
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(a) The user is talking with no
noise.
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(b) The user is talking with a
competing speaker.

Figure 3: Impact of the competing speaker.

Fig. 2 shows the prototype of EarSense [23], a new open-sourced
sensing platform that equips a 3D-printed enclosure with an IMU
sensor (i.e., Bosch BMI-160 [37]) inserted. EarSense has a flexible
design to make it attachable to any commercial HMW device (e.g.,
AirPods Pro). EarSense captures the same vibration as the testing
HMW and has no direct contact with the user’s head (shown in
Fig. 2a). We connect two EarSenses to a Raspberry Pi (RPi) with a
battery for data collection. Fig. 2b shows a volunteer wearing the
device on the head to avoid excessive vibrations caused by the con-
necting wires. A Python script on the RPi to control the EarSense(s)
through the I2C protocol and store the data for offline processing.
We only use the three-axis accelerometer provided by the IMU
chip because the gyroscope and magnetometer are less related to
the vibration. The default sample rate of the microphone and the
accelerometer are 16 kHz and 1.6 kHz, respectively. Since commer-
cial earphones like AirPods Pro doesn’t support two-channel audio
recording, EarSense records audio in a mono channel. We apply
L2-Norm to the spectrograms of three-axis acceleration to extract
the vibration intensity and avoid the impact of wearing position
and user’s motion.

4.2 Measurements of Bone-Conducted
Vibrations

We measure the difference between audio and bone-conducted vi-
brations with EarSense under various settings, i.e., the noises caused
by the competing speaker and user motion. In each experiment, we
ask a volunteer to wear Apple AirPods Pro with EarSense attached
(shown in Fig. 2b) in a meeting room with the size of 10 m2.
Competing speaker. First, we ask the user to sit in the meeting
room and speak while a loudspeaker is playing a pre-recording
speech one meter from the user as the competing speaker. Note
that the competing speaker is one of the most challenging envi-
ronmental noises for HMWs since its spectrum is similar to the
speech’s, making it indistinguishable from the noise suppression
algorithms. We set the volume of the competing speaker to be simi-
lar to the user, in which SNR is 3 dB. It is difficult to separate the
two sources according to volume since the two speeches are mixed.
Fig. 3a and Fig. 3b show the spectrograms of microphone audio and
acceleration when the environment is quiet or contains a competing
speaker when the user is talking, respectively. Note that we only
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show the spectrogram up to 1.6 kHz since there is slim energy in
the frequency bands higher than 1.6 kHz of the microphone, and the
accelerometer can only sense the signal with a frequency band of
800Hz. The spectrograms show that acceleration has lower signal
energy than microphone audio since acoustic vibration attenuates
during bone conduction, especially for high-frequency vibrations.
Compared with the silent environment, the audio spectrogram of
microphone audio with a competing speaker shows strong distor-
tions, as highlighted with the white box in Fig. 3b. However, the
accelerometer spectrograms do not show this phenomenon because
the competing speaker cannot produce bone-conducted vibrations.
In summary, the accelerometer receives the user’s voice through
bone conduction only, excluding environmental sounds over the
air, which is ideal for speech enhancement.
User motion. We also measure the noises caused by the user’s
motion. We ask the volunteer to walk while talking. Fig. 4 shows
that walking causes low-frequency noises in the acceleration. The
green boxes show the zoom-in result of the signals below 100Hz.
We can observe clear periodic fluctuations in low frequency (i.e., <
50Hz), which are caused by the steps of the volunteer. In summary,
the user’s motion only affects the acceleration at lower frequencies,
which does not affect our speech enhancement. In addition, we
observe slight low-frequency fluctuation in acceleration in Fig. 3,
although the volunteer is asked to stand still in this experiment.
Since most of the human speech is above 85 Hz [48], the removal
of audio in low frequency (i.e., the white horizontal lines in Fig. 3)
can effectively reduce the interference caused by human motion.
Frequency Response. We further explore the frequency response
of bone-conducted vibrations among users. Specifically, wemeasure
the frequency response of bone-conducted vibrations as follows:
First, we compute the spectrums of audio and vibration data, which
is denoted by 𝑆𝑀𝑖𝑐 and 𝑆𝐴𝑐𝑐 , respectively. Then, we compute the
Bone Conduction Function denoted by the frequency response of
bone-conducted vibrations by 𝑆𝐴𝑐𝑐/𝑆𝑀𝑖𝑐 at every frequency band.
Fig. 5 shows two volunteers’ frequency responses, in which the
error bars represent the averages and variances. The acceleration
shows higher sensitivity than the microphone within the frequency
of 200Hz ∼ 500Hz, while lower sensitivity at a higher frequency
(> 500Hz) due to the absorption by the head skull. In addition,
the frequency response keeps significant similarity among users,
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indicating the generalization to other users. Hence, the Bone Con-
duction Function should consider inter-people diversity and inter-
people similarity.
Locations on the head. Bone-conducted vibration exists at various
locations on the head. As shown in Fig. 6, we select ten unique loca-
tions of interest on the head and measure the intensities of received
bone-conducted vibrations. In particular, the nine locations are #1
upper ear, #2 eyebrow, #3 cheekbones, #4 ear, #5 temporomandibular
joint, #6 cheek, #7 temple, #8 back of the head, and #9 nose. In ad-
dition, we tape EarSense on the interior of the pad of an over-ear
headphone, which is denoted as #10. Among those positions, some
are compatible with commercial HMWs like glasses, headphones,
and VR headsets. Fig. 7 illustrates the corresponding positions on
HMWs. The numbers on the HMWs correspond to the locations in
Fig. 6. We attach EarSense to the HMWs (when applicable) or on
the face for all the following tests. We compute Pearson correlation
coefficients between the audio and the acceleration on each location
and mark the values using a color map in Fig. 6. We observe that
bone-conducted vibrations exist at most locations of the head. In
particular, locations closer to the mouth show higher correlations,
indicating a larger possibility of extracting clean speech.

In summary, our measurements show that bone-conducted vibra-
tion has the following characteristics: a) Bone-conducted vibration
is robust to environmental voice and only captures the user’s speech;
b) The user’s motion only generates vibrations lower than 85Hz; c)
Bone-conducted vibration has suppressed low and high-frequency
audio, which varies across users and within the same user; and d)
We can receive audio from multiple locations on the head.

4.3 Overview of VibVoice
Motivated by our findings in Section 4.2, bone-conducted vibration
is a promising complementary sensing modality to microphone
recording for speech enhancement under environmental noises.
However, the limited sample rate of HMW’s accelerometer and
diverse frequency responses of bone-conducted vibration introduce
challenges for multi-modal speech enhancement. On the other
hand, although it is possible to adapt existing audio-only DNN-
based speech enhancement models [22, 26, 29, 42, 55] to take both
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inputs, there is no large dataset with paired acceleration and audio
on HMWs available.

We design VibVoice, a speech enhancement system for HMWs
that leverages both the microphone recording and the speech infor-
mation from the bone-conducted vibrations. Fig. 8 overviews the
design of VibVoice, which contains three components: estimation
of Bone Conduction Function, data augmentation, and speech re-
construction network. First, we estimate a set of Bone Conduction
Functions using a small paired acceleration-audio dataset collected
from volunteers in Section 4.4.2. We note that this estimation does
not resort to black-box deep learning approaches, which require a
huge amount of training data. Instead, we take advantage of prior
knowledge that a frequency response exists between the accelera-
tion and audio spectrograms. Then, we augment the acceleration
data using the public audio dataset LibriSpeech [30] with Bone Con-
duction Functions in Section 4.4.3. Finally, after generating a large
amount of paired acceleration-audio dataset, we train a DNNmodel
which can reconstruct the clean audio from microphone audio and
the acceleration data in Section 4.5.

4.4 Bone Conduction Function
4.4.1 Function Formulation. Measurements in Section 4.2 show
that the acceleration contains acoustic vibrations caused by bone
conduction effects. There are two characteristics of acoustic vibra-
tions: a limited sample rate up to 800 Hz and diverse amplitude
suppression levels at frequency bands. We model the vibration
sensed by the accelerometer as follows:

𝑠𝑎𝑐𝑐 = 𝑓 (𝑠𝑚𝑖𝑐 ) + 𝜖𝑎𝑐𝑐 = 𝑓 (𝑠𝑠𝑝𝑒𝑒𝑐ℎ + 𝜖𝑚𝑖𝑐 ) + 𝜖𝑎𝑐𝑐 , (1)

where 𝑠𝑎𝑐𝑐 and 𝑠𝑚𝑖𝑐 are the raw data captured by the accelerometer
and the microphone, respectively; 𝑠𝑠𝑝𝑒𝑒𝑐ℎ denotes the ground-truth
(clean) speech audio; 𝜖𝑎𝑐𝑐 and 𝜖𝑚𝑖𝑐 are environmental noises cap-
tured by the accelerometer and the microphone, respectively; and
𝑓 is the Bone Conduction Function.

4.4.2 Function Estimation. To estimate the Bone Conduction Func-
tion, we recruit volunteers and record a five-minute speech for
each person with EarSense and AirPods Pro. The volunteers are
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Figure 9: Augmented (upper) and real (lower) Acceleration.

asked to read from a daily conversation material [44] in a silent
environment. We split paired data into 5-second windows, and each
window can contribute one Bone Conduction Function.

First, we compute the spectrograms 𝑆𝑇𝐹𝑇𝑎𝑐𝑐 and 𝑆𝑇𝐹𝑇𝑚𝑖𝑐 of
𝑠𝑎𝑐𝑐 and 𝑠𝑚𝑖𝑐 for each window using short-time Fourier transform
(STFT), respectively. Then, we apply Otsu’s method [28] to 𝑆𝑇𝐹𝑇𝑎𝑐𝑐
and 𝑆𝑇𝐹𝑇𝑚𝑖𝑐 for automatic image thresholding, and then discard
the bins whose value is lower than a threshold to remove outlier
noises. We note that our thresholding setting can leverage tempo-
ral information, which can better diminish the noise than a con-
stant threshold on the frequency or time domains. Furthermore,
we perform the pixel-wise division between 𝑆𝑇𝐹𝑇𝑎𝑐𝑐 and 𝑆𝑇𝐹𝑇𝑚𝑖𝑐
to obtain a response spectrogram, selecting the lower frequency
part of the audio spectrogram to align to the acceleration spectro-
gram. We model the Bone Conduction Function using the Gaussian
distribution in the frequency domain since the frequency response
(as shown in Fig. 5) has a non-trivial variance due to the com-
plex structure of the head skeleton [8]. In particular, we compute
𝑓 = 𝑆𝑎𝑐𝑐/𝑆𝑚𝑖𝑐 for the corresponding time window in 𝑆𝑇𝐹𝑇𝑎𝑐𝑐 and
𝑆𝑇𝐹𝑇𝑚𝑖𝑐 , respectively. The function 𝑓 ∼ 𝑁 (𝜇, 𝜎2), in which 𝜇 and
variance 𝜎 contribute to the contour and fluctuation of frequency
response, respectively. We measure 𝜇 and 𝜎 for each time window
to construct the parameter pool of Bone Conduction Functions.

4.4.3 Data Augmentation with Bone Conduction Functions. We de-
velop a data augmentation approach with Bone Conduction Func-
tions described in Section 4.4.2. Note that we cannot apply the
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Figure 10: Overview of our proposed multi-modal network
for speech enhancement.

inverse Bone Conduction Function to turn the acceleration back to
audio due to the significantly limited sample rate of acceleration
data. In addition, the frequency band (larger than 500Hz) has very
slim energy, which can cause unreasonable large energy after the
inversion. We utilize these functions to generate acceleration sig-
nals using a large-scale audio dataset, i.e., LibriSpeech [30]. To be
specific, for each audio clip, we first select a Bone Conduction Func-
tion (i.e., a list of means and variances over different frequencies)
from the pool randomly. Then, we restore the frequency response
from the Gaussian distribution of given parameters. Lastly, we
can augment the audio to synthetic acceleration data by directly
multiplying the frequency response.

Fig. 9 shows the spectrograms of augmented acceleration and
real acceleration signals, respectively. The augmented spectrogram
is close to the real acceleration spectrogram. We compute the simi-
larity by calculating the mean of the absolute distance of all pixels
in the whole spectrogram and divide it by the largest value of the
real acceleration spectrogram. The average error for all volunteers
is only 4.5%, which indicates that our proposed acceleration aug-
mentation is reliable.

4.5 Multi-Modal Speech Reconstruction
Since the sample rate of the microphone is 16 kHz while the ac-
celerometer is only 1.6 kHz. The reconstruction of high-quality
audio from acceleration is an ill-posed task since it requires pre-
dicting the lost patterns of the high-frequency band. Moreover, as
we have already generated a large-scale paired acceleration-audio
dataset, we can unleash the strong feature extraction capability of
DNNs for training. Compared with hand-crafted signal processing
approaches, deep learning is robust to diverse inputs. Specifically,
we adapt the multi-modal fusion paradigm [42, 55] and encoder-
decoder architecture based on U-net [35] to build the deep learning
model. Fig. 10 overviews of the DNN design, which is described in
detail as follows.

4.5.1 Architecture. Table 1a and 1b show the hyperparameters
of our multi-modal neural network of the acceleration and audio
branches, respectively. The details are illustrated as follows.
Encoder. We use two convolutional networks (CNNs) to encode
the high-level features from the two modalities, respectively. Then,
we concatenate the features from two encoders along the channel
dimension. We stack basic blocks to construct the encoder, where

Encoder Decoder
Layer 1 2 3 4 1 2 3
Filters 16 32 64 128 64 32 16
Kernel 3 3 3 3 3 3 3
Scale 1 1 0.5 0.5 1 2 2

(a) Acceleration branch.

Encoder Decoder
Layer 1 2 3 4 5 1 2 3 4 5
Filters 16 32 64 128 256 128 64 32 16 1
Kernel 3 5 5 5 5 5 5 5 5 3
Scale 0.5 0.5 0.5 0.5 0.5 2 2 2 2 2

(b) Audio branch.

Table 1: The design of DNN for multi-modal speech recon-
struction.

each block consists of a 2D convolutional layer, batch normaliza-
tion, ReLU activation, and max-pooling. We also design a residual
shortcut of the block input before the last deconvolution layer to ex-
pedite the training. The filters increase when the layer gets deeper
to extract more diverse features. To increase the reception field to
capture the harmonic pattern of the whole spectrogram, we use
dilated convolution rather than the conventional one. Since the
sample rate of audio data (i.e., 16 kHz) is ten times higher than that
of the acceleration data (1.6 kHz), the size of the audio spectrogram
on the frequency axis is also ten times larger. We note that the
feature maps from the two modalities should have the same shape
at the end of the encoders. Therefore, we discard the parts of the
audio spectrogram whose frequency is higher than 6.4 kHz, making
the remaining audio frequency band exactly eight times larger than
the acceleration data (i.e., 0.8 kHz). In addition, the audio subnet
(i.e., encoder) has three more down-sample operations than the
acceleration branch to make the output sizes of the two modalities’
features consistent.
Decoder. We design two decoders: a fusion decoder and an aux-
iliary decoder. The decoder has the same design of blocks as the
encoder, but the stacked blocks have a decreasing number of fil-
ters but increasing sizes of the output tensor. The fusion decoder
receives both modalities’ features via a concatenation and outputs
a spectrogram mask. To obtain the constructed clean spectrogram,
this mask will be overlaid on the original noisy audio spectrograms
by element-wise multiplication. The auxiliary decoder only receives
the feature of the accelerometer and predicts the low-frequency
part of clean audio. The self-supervised loss can prevent the acceler-
ation encoder from being dominated by the audio input, given that
the noisy input audio is similar to the clean audio to acceleration
by nature (i.e., both are audio).

4.5.2 Waveform reconstruction. After obtaining the enhanced
spectrogram from the multi-modal decoder, the last step is con-
verting the spectrogram to the waveform using inverse short-time
Fourier transform (ISTFT). The DNN of VibVoice only reconstructs
the magnitude of the spectrogram. Since the phase of the speech
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spectrogram is hardly predictable, we use the same phase of the
noisy audio signal for the output. Our insight is that although the
audio phase can be polluted in a noisy environment, our recon-
structed magnitude can attenuate the unwanted time-frequency
pixels in spectrograms, which restricts the interference of the noisy
phase. Although several works [42, 55] try to estimate the clean
phase by a subnet or a pre-defined algorithm, our tests show that the
predicted phase is unstable, and their improvements are marginal
and computationally expensive.

4.5.3 Model Training. We generate a pool of Bone Conduc-
tion Functions by performing cubic interpolation on existing func-
tions from our dataset. We use Gaussian distribution to alleviate
our model’s overfitting and improve the generalizability among
users. In addition, we augment the data with Gaussian distribution
based on each frequency band to preserve the low-pass features.
Thus, the limited Bone Conduction Functions can augment a large
acceleration-audio dataset from an existing public dataset with
diverse features. This dataset can extract the basic features of mul-
tiple modalities, but it is not enough for deployment because of the
difference between the target user and our pool of Bone Conduc-
tion Functions. Therefore, we collected another acceleration-audio
paired dataset from a different group of volunteers to train the
model, which is also used to evaluate VibVoice’s performance. Note
that VibVoice does not require any data from the target user either
during the Bond Conduction Function estimation or model training.
All evaluations adopt leave-one-out validation. We pick one user
as the testing dataset, while the others are regarded as the training
dataset.

Although the training of VibVoice does not require any data from
the target user, one-shot data from the target domain can further
improve the overall performance. This data collection can share
the recorded data during the setup of HMWs, e.g., the personalized
model for calling voice assistants, which incurs no extra overhead
to the user. In addition, VibVoice can record data when the user
is speaking in a quiet environment. As the data collection doesn’t
require specific content, our system can unobtrusively record user-
specific data during the long-time usage of HMWs and improve the
performance of the target user continuously.

The fusion decoder uses the STFT Loss [10]. We use 𝑦 and 𝑦 to
represent the clean and enhanced signals. The STFT loss can be
denoted as follows:

𝐿𝑠𝑡 𝑓 𝑡 (𝑦,𝑦) = 𝐿𝑠𝑐 (𝑦,𝑦) + 𝐿𝑚𝑎𝑔 (𝑦,𝑦),

𝐿𝑠𝑐 (𝑦,𝑦) =
| |𝑆𝑇𝐹𝑇 (𝑦) | − |𝑆𝑇𝐹𝑇 (𝑦) | |𝐹

| |𝑆𝑇𝐹𝑇 (𝑦) | |𝐹
,

𝐿𝑚𝑎𝑔 (𝑦,𝑦) =
1
𝑇
|𝑙𝑜𝑔 |𝑆𝑇𝐹𝑇 (𝑦) | − 𝑙𝑜𝑔 |𝑆𝑇𝐹𝑇 (𝑦) | |1,

(2)

where 𝐿𝑠𝑐 refers to convergence (sc) loss and 𝐿𝑚𝑎𝑔 refers to the
magnitude (mag) loss. We use Mean Square Error (MSE) as the
training loss for the auxiliary decoder. The fusion decoder and
auxiliary decoder targets are full-band clean spectrogram and lower-
band clean spectrogram, respectively. The final loss is formulated
as follows:

𝐿(𝑦,𝑦) = 𝐿𝑠𝑡 𝑓 𝑡 (𝑦,𝑦) + |𝑦𝑙𝑜𝑤𝑏𝑎𝑛𝑑 − 𝑦𝑙𝑜𝑤𝑏𝑎𝑛𝑑 |2 × 𝜆, (3)
which is the joint loss function that covers both fusion and auxiliary
decoder. We set 𝜆 to 0.05 to balance the scales of two losses.

5 EVALUATION
5.1 Experiment Setup
We use EarSense introduced in Section 4.1 to collect audio and
acceleration signals simultaneously1. The volunteers are asked to
wear EarSense and speak in a meeting room with the size of 10 m2.
The reading material is selected from daily English conversations
[44]. Each volunteer reads the material for 30 seconds and repeats
it 20 times, generating ten minutes of data. For data augmentation,
we recruit eight volunteers to generate a pool of Bone Conduction
Functions and use it to augment 100 hours of data from LibriSpeech
[30]. In addition, we recruit another 15 volunteers for training and
testing. For each experiment, we adopt the leave-one-out validation,
i.e., training the model for each user with the dataset except that
user. The volume of our collected speech is between 60dB to 70dB,
which is the same as regular conversations [3]. To test VibVoice’s
robustness to diverse noises, we use three categories of noises with
balanced possibility, including environmental noises (50 classes)
[31], competing speakers from another subset of LibriSpeech [30],
and 20 songs with languages of English, Mandarin, and Japanese.
We apply a random room impulse response from dataset [20], con-
taining point-source noises, real isotropic noises, and simulated the
noises of 600 rooms. We implement VibVoice using PyTorch and
train it on a PC with an Intel i9-12900K CPU and two Nvidia RTX
3090 GPUs. The model is trained with a step learning rate scheduler
with a learning rate of 0.001 and an Adam optimizer. The epoch
number is 30. The length of the STFT window and the overlap for
the audio are 640 and 320, while 64 and 32 are for the acceleration.
We open-source the implementation and data in [23].

5.2 Baseline
We deploy two baselines, i.e., FullSubNet (FSN) [16] and SEANet
(SN) [43]. FSN and SN are two state-of-the-art speech enhance-
ment approaches using audio-only and audio-acceleration inputs,
respectively. We train SN using our dataset since the one used in
its paper is not available to the public. Specifically, we train SN
using acceleration data with a sample rate of 1.6kHz to ensure it
is the same as VibVoice. Note that SN indicates that it supports
acceleration data with a wide range of sample rates.

5.3 Evaluation Metric
We use three evaluation metrics, i.e., Perceptual Evaluation of
Speech Quality (PESQ), Signal Noise Ratio (SNR), and Log-Spectral
Distance (LSD), which are described as follows:
Perceptual Evaluation of Speech Quality (PESQ) is a popular test
standard for automatically assessing the user experience of speech
quality, defined in P.862 standard by International Telecommuni-
cation Union [34]. The results generated by PESQ represent the
opinion scores that range from 1 (bad) to 5 (excellent). We use the
wide-band version to evaluate the full-band speech quality in the
evaluations.
Signal Noise Ratio (SNR) is a metric widely used in signal processing
that can be measured as follows: 𝑆𝑁𝑅(𝑥,𝑦) = 10 ∗ 𝑙𝑜𝑔10 ( 𝑦

𝑥−𝑦 )
2,

where 𝑥 and 𝑦 denote the estimated and clean audio, respectively.

1The experiments that involve human subjects have been approved by the IRB of the
authors’ institution (CUHK-SBRE-21-0570).
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SNR compares the desired signal and the deviation. A higher SNR
value means better audio quality. We use the scale-invariant SNR
in the implementation to reduce the impact of scale.
Log-Spectral Distance (LSD) measures the quality of frequencies
between the reconstructed audio and the ground truth audio with:
𝐿𝑆𝐷 (𝑥,𝑦) = 1

𝐿

∑𝐿
𝑙=1

√︃
1
𝐾

∑𝐾
𝑘=1 (𝑋 (𝑙, 𝑘) − 𝑋 (𝑙, 𝑘))2, where 𝑙 and 𝑘

denote the time and frequency index of the spectrogram, respec-
tively; 𝑋 = 𝑙𝑜𝑔( |𝑆𝑇𝐹𝑇 (𝑦) |2), and 𝑋 = 𝑙𝑜𝑔( |𝑆𝑇𝐹𝑇 (𝑥) |2). A higher
LSD value means lower audio quality.

5.4 Overall Performance
We investigate VibVoice’s performance by mixing clean speech
with noise audio randomly picked from the noise dataset. We set
the SNR of the noisy data ranges from 0dB to 20dB, with an average
of 10dB, which covers a wide spectrum of noise levels.
Target user calibration. VibVoice can work out of the box, while
data from the target user can further improve performance. Fig. 11
shows the performance of VibVoice and the two baselines with dif-
ferent amounts of data from the target user, in which zero means no
target-user data is used during the training. The results show that
longer target-user data can improve performance for all approaches,
and VibVoice performs better than baselines with the same amount
of calibration data. The calibration data can be collected continu-
ously during usage without the user’s inputs/operations (c.f., Sec-
tion 4.5.3). VibVoice achieves the best perceptive performance ac-
cording to PESQ and the best-reconstructed spectrogram according
to LSD. VibVoice and FSN have similar SNR results since they output
similar signals in the time domain compared to the clean one.
Noise type. We evaluate the impact of different types of noises in
Fig. 12, i.e., environmental noises, competing speakers, and music.
The result shows that VibVoice performs better under all noises and
metrics except for the SNR with music noise. This is because the
complex and dynamic spectrum of the user’s speech and music’s
vocals introduce minor fluctuations in high frequencies, reflecting
large fluctuations in SNR.
Noise level. We test VibVoice’s performance under noise levels of
low (10 dB), medium (5 dB), and high (0 dB with only speech noise).
The results in Fig. 13 show that VibVoice has better performance
improvements, especially when the noise is challenging, i.e., 21%
improvement on PESQ and 26% improvement on SNR. This is be-
cause the acceleration can more robustly identify the target speech,
whereas the audio-only solution is difficult to differentiate sound
with a similar pattern (e.g., strong speech noise).
Noise source. We evaluate the impact of different numbers of noise
sources by repeatedly mixing clean audio with random audio clips.
Fig. 14 shows that VibVoice’s performance degrades as the number
of noise sources increases but still outperforms all the baselines.
Temporal stability. We further examine how VibVoice performs
for the same user over time. Note that the offset of sensor placement
and minor changes in speech can cause a slight change. We collect
ten-minute data from three volunteers twice, six months apart.
The results show that the performance of VibVoice has negligible
changes, from 2.6 to 2.5 for PESQ, 15.7 to 15.5 for SNR, and 4.3 to 4.6
for LSD. Besides, VibVoice outperforms FSN, whose performance is
2.1 for PESQ, 15.2 for SNR, and 11 for LSD. The results affirm that
VibVoice is robust to temporal changes.

Airway blockage. The blockage of air transmission caused by
personal protective equipment like facial masks can significantly
suppress the user’s speech volume. We ask three volunteers to
test VibVoice by speaking the same content with and without facial
masks. The result shows that VibVoice’s performance only degrades
by 0.05 (< 2%) for PESQ, 0.4 (< 3%) for SNR, and 0.1 (< 3%) for LSD
when the subject wears the mask. VibVoice gets a more significant
margin than FSN, whose performance is 2.15 for PESQ, 13.8 for SNR,
and 10 for LSD. This aligns with our expectation since VibVoice uses
bone-conducted vibration that is not affected by air transmission.
Variances among users. Speech and bone-conducted vibration
can differ across users due to vocal features, head skull shapes, body
fat, etc. Fig. 16 shows the performance of VibVoice across 15 users.
VibVoice shows stable and significantly better performance in PESQ
compared to baseline and comparable performance in SNR.
Sensing location. We test VibVoice when EarSense is placed in
ten locations on the head as defined in Fig. 6, validating VibVoice’s
effectiveness for different HMW devices. The bars in Fig. 15 show
VibVoice’s performance at each location. The red line represents the
performance of the baseline at #4 ear. The results show that VibVoice
achieves satisfactory performance at all locations in PESQ. Note
that locations like #1 upper ear, #2 eyebrow, #5 temporomandibular
joint, #7 temple, and #10 interior of the pad of the headphone show
similar or slightly lower SNR than the baseline, which is because
the vibration intensity is slim due to their far distance to the audio
source.
Data augmentation effectiveness. We evaluate how VibVoice’s
data augmentation reduces the amount of paired training data
needed. We compare the performance of training VibVoice from
a) paired data of 18 to 180 hours and b) data augmented from
three hours of paired data. The dataset [45] is a large-scale Chinese
acceleration and audio dataset collected by earphones, and the
bandwidth of acceleration is around 5kHz. The results in Fig. 17
show that VibVoice with data augmentation can achieve better
performance with ∼ 24× less paired data.
Summary. VibVoice outperforms FSN and SN by up to 21% for
PESQ when the noise volume is low, where the PESQ for VibVoice
and FSN are 2.7 and 2.21, respectively. VibVoice outperforms the
baselines up to 26% for SNR when the noise is speech with high
volume, where the SNR of VibVoice and FSN are 2.0 and 1.6, re-
spectively. In addition, VibVoice outperforms the baselines 50∼80%
in LSD under most impact factors, indicating the efficiency of our
multi-modal design and novel data augmentation. VibVoice has
slightly lower performance in SNR for some cases as it can be
biased due to the similar spectrum of the user’s speech and mu-
sic’s vocal. The dynamic also introduces minor fluctuations. In
comparison, LSD evaluates the whole band without preference,
so VibVoice outperforms the two baselines by a large margin. We
further evaluate the perception of real users through a user study
in Section 6.

Compared with the strong baseline FSN, VibVoice achieves good
performance in various cases. Compared with multi-modal base-
line SN, whose network design has limited capability to recover
speech information as VibVoice outperforms it by a large margin.
Besides, as discussed in Section 2.2.3, the data augmentation of SN
does not consider the user-specific bone conduction effects, while
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Figure 13: Impact of noise levels.
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Figure 14: Number of noise sources.

VibVoice combines the knowledge from extensive measurements
and individual features from the target user.

5.5 Ablation Study
We conduct an ablation study to understand the performance of dif-
ferent design components in VibVoice. The performance of VibVoice
without different components is listed in Table 2.
No auxiliary decoder. First, we remove the self-supervise loss,
meaning the audio may dominate the model. The results indicate
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Figure 15: VibVoice on different head locations. Red line: the
performance of the baseline, i.e., FullSubNet.
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Figure 16: VibVoice on different users. Red line: the perfor-
mance of the baseline, i.e., FullSubNet.
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Figure 17: Effectiveness of data augmentation. Blue bars: Vib-
Voice using less than three-hour paired data with augmenta-
tion. Yellow bars: VibVoice using 18- to 180-hour paired data
without augmentation.

PESQ SNR LSD
VibVoice 2.6 15.6 3.5

w/o auxiliary decoder 2.5 15.1 4.4
w/o augmentation 1.9 14 5

w/o Gaussian approx 2.4 15.2 4.2
Accelerometer sample rate: 1200 Hz 2.47 14.4 4.2
Accelerometer sample rate: 800 Hz 2.45 14.3 4.5
Accelerometer sample rate: 400 Hz 2.4 14.2 4.4

Table 2: Ablation study.

that the variant slightly degrades by 0.1 in PESQ, 0.3 in SNR, and
0.8 in LSD, respectively.
No data augmentation. Second, we remove the data augmentation
based on Bone Conduction Function. The performance significantly
degrades to 1.9 in PESQ, 14 in SNR, and 5 in LSD. According to
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the definition of ITU and mean opinion score (MOS), the audio
quality is poor when the score drops from 2.5 to 1.9 [47]. This result
aligns with our motivation that a small-scale self-collected dataset
is insufficient to train a strong neural network.
No Gaussian approximation. Third, the Bone Conduction Func-
tion is modeled by only the mean, while the variance is zero. The
performance drops 0.2 in PESQ, 0.4 in SNR, and 0.5 for LSD, indi-
cating that our Gaussian approximation is close to the nature of
the Bone Conduction Function.
Lower sample rate. The frequency response in Fig. 5 shows that
the speech information from above 600 Hz is very limited. Hence,
we evaluate the performance of VibVoice with a lower sample rate
by downsampling the acceleration data to 1200 Hz, 800 Hz, and
400 Hz. The results show that VibVoice is robust to various sample
rates, which consume less power in processing and communication.
When the sample rate is 800 Hz, the output’s PESQ only degrades
10%.

5.6 On-Site Evaluation
In the following, we conduct extensive experiments to validate
the performance of VibVoice with ongoing noise in the wild. The
volunteers are asked to read the same content as the experiments
in Section. 5.4. Apart from the environmental noises, we use a
smartphone (i.e., Huawei P30) to play recorded speech and ask a
volunteer to speak one meter away as the interference. The speech
content of the competing speaker is irrelevant to the target speech.
We collect 10 minutes of data with about 3dB SNR at each test
location. Unlike synthetic noisy speech, we can neither capture
the ground truth of clean speech and evaluate the metrics like
SNR and PESQ nor train the model. Instead, we use the result of
Automatic Speech Recognition [33] to evaluate the quality of the
speech. We use Word Error Rate (WER = 𝑆+𝐷+𝐼

𝑁
) as the evaluation

metric, where S is the number of substitutions, D is the number
of deletions, I is the number of insertions, and N is the number of
words in the reference. The higher the value of WER, the lower
the audio quality. To better evaluate the performance of VibVoice,
we further define the relative improvement of WER in percentage
as (𝑊𝐸𝑅𝑜−𝑊𝐸𝑅𝑣 )

𝑊𝐸𝑅𝑜
× 100%, where𝑊𝐸𝑅𝑜 refers to the WER of the

original audio,𝑊𝐸𝑅𝑣 refers to the WER of VibVoice.

5.6.1 Environments. We evaluate VibVoice in diverse indoor and
outdoor environments, including the meeting room, corridor, stairs,
lumber room, and railway station. We note that the experiment
conducted in the real world naturally contains diverse environ-
mental noises (e.g., train, car, construction, wind) and competing

VibVoice FSN SN
Desktop CPU 0.05 0.27 0.5
Desktop GPU 0.016 0.034 0.07

P30 0.16 5 1.9
Mate20 0.29 4.6 1.7
Pixel7 0.31 5.2 1.4

Table 3: Runtime analysis (second/instance).

speakers. The results in Fig. 18 show that VibVoice effectively im-
proves speech quality in most environments. Most existing works
have good performance in statistical noises like machinery noises,
however, they perform badly when there are competing speakers
in the same room, which is a common indoor scenario of voice
communication. Although speech enhancement is challenging in
small spaces like a meeting room and corridor due to the strong
multi-path effect, VibVoice can still improve the speech quality and
achieve an improvement ratio of over 50%, and 48%, respectively.
VibVoice also achieves a 37% improvement for the hall, 29% for the
outdoor square, and 19% in the scene of the outdoor stair when
there is intermittent construction noise. We note that in both the
warehouse and station, the improvement of VibVoice is marginal.
This is mainly because that AirPods already perform well in these
scenarios. In comparison, VibVoice keeps outperforming FSN with
much less latency.

5.6.2 Earphones. We deploy VibVoice on three popular TWS ear-
phones, i.e., Apple AirPods Pro, Huawei FreeBuds Pro, and Samsung
GalaxyBuds Pro. During the experiment, we turn on all available
acoustic signal processing algorithms provided by the manufac-
turers, including speech enhancement and noise suppression. The
results show that the WER with a competing speaker is 60% for
AirPods, 66% for FreeBuds, and 160% for GalaxyBuds, respectively.
Due to the different designs of the earphones, we do not implement
VibVoice on other earphones. Since VibVoice can effectively reduce
the WER of AirPods Pro by 50%, we envision that VibVoice can be
extended to other earphones.

5.6.3 User movements. We further evaluate the performance
of VibVoice when the user is moving. We ask volunteers to move
in the room with a speed of around 1m/s. The result shows the
improvement for a still volunteer is 58.3 %, while the same moving
volunteer is 57.1%. The standard deviation for the still and moving
case is 29.9 % and 30.4%, respectively. Although the improvement
ratio slightly drops, VibVoice still preserves its performance under
regular movements.

5.7 Runtime Evaluation
We test the execution latency of VibVoice and the two baselines
(i.e., FSN [16] and SN [43]) on a desktop PC (i.e., i7-11700k CPU and
RTX 3060 GPU) and three smartphones (i.e., Huawei P30, Huawei
Mate20, and Google Pixel 7). We run the inference of 5 seconds
clip 100 times and record the mean latency. The results in Table
3 show that VibVoice reduces up to 31× and 12× less latency on
average than FSN and SN, respectively. On the other hand, the
results show that VibVoice exhibits a greater advantage in runtime
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for low-end devices. In conclusion, VibVoice can support real-time
voice applications with a delay of fewer than 0.6 seconds (i.e., two
times the inference latency) for processing 5 seconds audio clip.
The real-time factor is only 0.12, significantly less than the minimal
requirement, which means less energy consumption and space to
process other tasks.

6 USER STUDY
We recruit 35 volunteers to study the real perceived experience of
VibVoice.
Questionnaire Design. We play a few recordings from the dataset
described in Section 5.1 to volunteers. The length of each sentence
is clipped or padded to 5 seconds. The first part is to evaluate the
intelligibility of reconstructed speech. The participants are asked to
listen to the audio clips enhanced by VibVoice and write down the
sentences. We use WER to evaluate the results. In the second part
of the study, participants listen to two audio clips with the same
content and choose the audio with better quality in their perception.
This study evaluates whether the reconstructed speech improves
the user experience or not. We conduct two kinds of comparisons
five times. One type is to ask participants to choose between audio
enhanced by VibVoice and the original noisy audio. The second
kind is to ask participants to choose between audio enhanced by
VibVoice and the baseline (i.e., FSN). We use the correct ratio 𝑃

𝑃+𝑁
to represent the improvement of VibVoice, in which 𝑃 and 𝑁 are
the numbers of choosing VibVoice and negative versa vice.

6.1 Study Result
According to the results of the first part, VibVoice achieves an
overall WER of 21.5%, which is acceptable for understanding the
audio content and confirm the effectiveness of VibVoice. According
to the answers to the second question, the survey results show
that 87% of the participants choose VibVoice over the baseline, and
72% of them choose VibVoice over the original audio without any
enhancements. In addition, we discuss with participants why they
prefer the original audio sounds over the baseline. The baseline
can produce acoustic artifacts and sometimes wrongly suppress
the sound of the target speaker. We note that some participants
observed that the impact of artifacts and suppression is hindered
after knowing the content or listening repeatedly. However, the
speech generated by the baseline causes lots of misunderstanding
for the first-time listener. In conclusion, the user study results
show that VibVoice can enhance speech quality and improve user
experience compared with the original audio and the baseline.

7 DISCUSSION
System overhead. VibVoice can transmit the raw acceleration data
to the mobile device at a bit rate of 153.6 kbps (6*16 bits*1.6 kHz).
The Bluetooth profiles like Hands-Free Profile (HFP) support a 16
kbps (16 kHz) data rate, which is adequate to transmit the accel-
eration data under Bluetooth 5.0 [49]. Besides, the data of IMU is
also applicable to the compression codec, which can further reduce
communication overhead.

Most head-mounted wearables run on the battery. The extra
energy consumed by VibVoice is mainly ADC, which is 0.54 mW
(i.e., 180𝜇𝐴 ∗ 3𝑉 ) [37]. In contrast, each AirPods Pro earbud has

a 43 mAh battery, which can support 3.5 hours of talking time.
Hence, VibVoice only has an extra 1.5% power consumption for
earphones. Note that many earphones like AirPods Pro already
have motion-related applications running (e.g., spatial audio [5]),
in which VibVoice can share the data collection process.
Bone conduction function. VibVoice shows that Bone Conduc-
tion Function can be estimated using the Gaussian distribution with
a fine-tuning process. We note that some finite-element models
can be used for bone-conduction sound simulation, which further
improves the performance of VibVoice [8].
Language. The data augmentation approach is based on the bone
conduction effect of the user’s skull, which contains no language-
specific features, which means VibVoice can be generalized to any
language.
Sensing location. Based on our experience of extensive evalua-
tions, we summarise two guidelines about the optimal placement
of the IMU sensors on the user’s head for the HMWmanufacturers:
1) closer to the vibrating organ, and 2) a tight contact with the head.
Meanwhile, it is also important to consider human comfort and
compatibility with current devices.
Customized device. We envision combining VibVoice with raw
data before hardware processing. We use the same APIs to record
audio from the commercial TWSmicrophone. The recorded audio is
processed by the acoustic signal processing provided by the system,
requiring the least system privileges and no extra hardware modifi-
cation. However, as VibVoice is built upon the black-box output, the
result can be biased sometimes due to the performance of hardware
processing. For example, AirPods can wrongly suppress the sound
and produce unnatural noise, which doesn’t appear in our training
dataset and is hardly predictable. VibVoice can perform better with
access to raw data of the TWS/HMW’s microphone array (i.e., used
for active noise cancellation or acoustic beamforming).

8 CONCLUSION
In this paper, we leverage the bone-conducted vibration to enhance
the voice recording quality on head-mounted wearables. We pro-
pose VibVoice, an end-to-end multi-modal speech enhancement
approach that reconstructs clean speech audio by fusing the acceler-
ation and audio from head-mounted wearables. Meanwhile, we ex-
tract the Bone Conduction Function to augment acceleration from a
large public audio dataset. We collected a paired acceleration-audio
dataset to evaluate VibVoice at various locations. Our system out-
performs the state-of-art audio-based speech enhancement model
up to 21% in PESQ and 26% in SNR with 30 times less latency on the
mobile device. In the online user study of 35 participants, VibVoice
is preferred by 87% of the participants. These results reflect the
potential of bone-conducted vibration sensing on head-mounted
wearables, as well as the effectiveness of VibVoice in speech en-
hancements.
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